Python编程中运用闭包时所需要注意的一些地方
写下这篇博客,起源于Tornado邮件群组的这个问题how to use outer variable in inner method,这里面老外的回答很有参考价值,关键点基本都说到了。我在这里用一些有趣的例子来做些解析,简要的阐述下Python的闭包规则,首先看一个经典的例子:
def foo(): a = 1 def bar(): a = a + 1 # print a + 1 # b = a + 1 # a = 1 print id(a) bar() print a, id(a)
在Python2.x上运行这个函数会报UnboundLocalError: local variable 'a' referenced before assignment即本地变量在引用前未定义,如何来理解这个错误呢?PEP 227里面介绍到,Python解析器在搜索一个变量的定义时是根据如下三级规则来查找的:
The Python 2.0 definition specifies exactly three namespaces to check for each name — the local namespace, the global namespace, and the builtin namespace.
这里的local实际上可能还有多级,上面的代码就是一个例子,下面通过对代码做些简单的修改来一步步理解这里面的规律:
- 如果将a = a + 1这句换成print a + 1或者b = a + 1,是不会有问题的,即在内部函数bar内,外部函数foo里的a实际是可见的,可以引用。
- 将a = a + 1换成 a = 1也是没有问题的,但是如果你将两处出现的a的id打印出来你会发现,其实这两个a不是一回事,在内部函数bar里面,本地的a = 1定义了在bar函数范围内的新的一个局部变量,因为名字和外部函数foo里面的变量a名字相同,导致外部函数foo里的a在内部函数bar里实际已不可见。
- 再来说a = a + 1出错是怎么回事,首先a = xxx这种形式,Python解析器认为要在内部函数bar内创建一个新的局部变量a,同时外部函数foo里的a在bar里已不可见,而解析器对接下来对右边的a + 1的解析就是用本地的变量a加1,而这时左边的a即本地的变量a还没有创建(等右边赋值呢),因此就这就产生了一个是鸡生蛋还是蛋生鸡的问题,导致了上面说的UnboundLocalError的错误。
要解决这个问题,在Python2.x里主要有两个方案:
用别名替代比如b = a + 1,内部函数bar内只引用外部函数foo里的a。
将foo里的a设成一个容器,如list
def foo(): a = [1, ] def bar(): a[0] = a[0] + 1 bar() print a[0]
当然这有些时候还是很不方便,因此在Python3.x中引入了一个nonloacal的关键字来解决这个问题,只要在a = a + 1前加一句nonloacal a即可,即显式的指定a不是内部函数bar内的本地变量,这样就可以在bar内正常的使用和再赋值外部函数foo内的变量a了。
在搜索Python闭包相关的材料中,我在StackOverflow上发现一个有趣的有关Python闭包的问题,有兴趣的可以思考思考做做看,结果应该是什么?你预期的结果是什么,若不一致,如果要得到你预期的结果应该怎么改?
flist = [] for i in xrange(3): def func(x): return x * i flist.append(func) for f in flist: print f(2)

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Pour lire une file d'attente à partir de Redis, vous devez obtenir le nom de la file d'attente, lire les éléments à l'aide de la commande LPOP et traiter la file d'attente vide. Les étapes spécifiques sont les suivantes: Obtenez le nom de la file d'attente: Nommez-le avec le préfixe de "Fitre:" tel que "Fitre: My-Quyue". Utilisez la commande LPOP: éjectez l'élément de la tête de la file d'attente et renvoyez sa valeur, telle que la file d'attente LPOP: My-Queue. Traitement des files d'attente vides: si la file d'attente est vide, LPOP renvoie NIL et vous pouvez vérifier si la file d'attente existe avant de lire l'élément.

Question: Comment afficher la version Redis Server? Utilisez l'outil de ligne de commande redis-Cli --version pour afficher la version du serveur connecté. Utilisez la commande Info Server pour afficher la version interne du serveur et devez analyser et retourner des informations. Dans un environnement de cluster, vérifiez la cohérence de la version de chaque nœud et peut être vérifiée automatiquement à l'aide de scripts. Utilisez des scripts pour automatiser les versions de visualisation, telles que la connexion avec les scripts Python et les informations d'impression.

Les étapes pour démarrer un serveur Redis incluent: Installez Redis en fonction du système d'exploitation. Démarrez le service Redis via Redis-Server (Linux / MacOS) ou Redis-Server.exe (Windows). Utilisez la commande redis-Cli Ping (Linux / MacOS) ou redis-Cli.exe Ping (Windows) pour vérifier l'état du service. Utilisez un client redis, tel que redis-cli, python ou node.js pour accéder au serveur.

Le réglage de la taille de la mémoire redis doit prendre en compte les facteurs suivants: volume de données et tendance de croissance: estimer la taille et le taux de croissance des données stockées. Type de données: différents types (tels que les listes, les hachages) occupent une mémoire différente. Politique de mise en cache: le cache complet, le cache partiel et les politiques de phasage affectent l'utilisation de la mémoire. Péx commercial: laissez suffisamment de mémoire pour faire face aux pics de trafic.

** Le paramètre central de la configuration de la mémoire redis est MaxMemory, qui limite la quantité de mémoire que Redis peut utiliser. Lorsque cette limite est dépassée, Redis exécute une stratégie d'élimination selon maxmemory-policy, notamment: Noeviction (rejeter directement l'écriture), AllKeys-LRU / Volatile-LRU (éliminé par LRU), AllKeys-Random / Volatile-Random (éliminé par élimination aléatoire) et TTL volatile (temps d'expiration). D'autres paramètres connexes incluent des échantillons maxmemory (quantité d'échantillon LRU), compression RDB

Redis Persistance prendra une mémoire supplémentaire, RDB augmente temporairement l'utilisation de la mémoire lors de la génération d'instantanés, et AOF continue de prendre de la mémoire lors de l'ajout de journaux. Les facteurs d'influence comprennent le volume des données, la politique de persistance et la configuration de Redis. Pour atténuer l'impact, vous pouvez raisonnablement configurer les stratégies d'instantané RDB, optimiser la configuration AOF, mettre à niveau le matériel et le surveiller l'utilisation de la mémoire. En outre, il est crucial de trouver un équilibre entre les performances et la sécurité des données.

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.
