Laravel不同数据库的模型之间关联,laravel模型关联
Laravel不同数据库的模型之间关联,laravel模型关联
假设ModelA和ModelB之间是BelongsTo的关系
如果同属于一个数据库连接
那么
<span>public</span> <span>function</span><span> a(){ </span><span>return</span> <span>$this</span>->belongsTo("ModelA"<span>) }</span>
如果两个模型属于不同的数据库
那么
<span>public</span> <span>function</span><span> a() { </span><span>$instance</span> = <span>new</span><span> ModelA; </span><span>$instance</span>->setConnection(<span>$a_conn</span><span>); </span><span>$query</span> = <span>$instance</span>-><span>newQuery(); </span><span>return</span> <span>new</span> BelongsTo(<span>$query</span>, <span>$this</span><span>); }</span>

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

À la pointe de la technologie logicielle, le groupe de l'UIUC Zhang Lingming, en collaboration avec des chercheurs de l'organisation BigCode, a récemment annoncé le modèle de grand code StarCoder2-15B-Instruct. Cette réalisation innovante a permis une percée significative dans les tâches de génération de code, dépassant avec succès CodeLlama-70B-Instruct et atteignant le sommet de la liste des performances de génération de code. Le caractère unique de StarCoder2-15B-Instruct réside dans sa stratégie d'auto-alignement pur. L'ensemble du processus de formation est ouvert, transparent et complètement autonome et contrôlable. Le modèle génère des milliers d'instructions via StarCoder2-15B en réponse au réglage fin du modèle de base StarCoder-15B sans recourir à des annotations manuelles coûteuses.

1. Introduction Au cours des dernières années, les YOLO sont devenus le paradigme dominant dans le domaine de la détection d'objets en temps réel en raison de leur équilibre efficace entre le coût de calcul et les performances de détection. Les chercheurs ont exploré la conception architecturale de YOLO, les objectifs d'optimisation, les stratégies d'expansion des données, etc., et ont réalisé des progrès significatifs. Dans le même temps, le recours à la suppression non maximale (NMS) pour le post-traitement entrave le déploiement de bout en bout de YOLO et affecte négativement la latence d'inférence. Dans les YOLO, la conception de divers composants manque d’une inspection complète et approfondie, ce qui entraîne une redondance informatique importante et limite les capacités du modèle. Il offre une efficacité sous-optimale et un potentiel d’amélioration des performances relativement important. Dans ce travail, l'objectif est d'améliorer encore les limites d'efficacité des performances de YOLO à la fois en post-traitement et en architecture de modèle. à cette fin

La série de référence YOLO de systèmes de détection de cibles a une fois de plus reçu une mise à niveau majeure. Depuis la sortie de YOLOv9 en février de cette année, le relais de la série YOLO (YouOnlyLookOnce) a été passé entre les mains de chercheurs de l'Université Tsinghua. Le week-end dernier, la nouvelle du lancement de YOLOv10 a attiré l'attention de la communauté IA. Il est considéré comme un cadre révolutionnaire dans le domaine de la vision par ordinateur et est connu pour ses capacités de détection d'objets de bout en bout en temps réel, poursuivant l'héritage de la série YOLO en fournissant une solution puissante alliant efficacité et précision. Adresse de l'article : https://arxiv.org/pdf/2405.14458 Adresse du projet : https://github.com/THU-MIG/yo

Les dernières versions de Laravel 9 et CodeIgniter 4 fournissent des fonctionnalités et des améliorations mises à jour. Laravel9 adopte l'architecture MVC et fournit des fonctions telles que la migration de bases de données, l'authentification et le moteur de modèles. CodeIgniter4 utilise l'architecture HMVC pour fournir le routage, l'ORM et la mise en cache. En termes de performances, le modèle de conception basé sur le fournisseur de services de Laravel9 et le framework léger de CodeIgniter4 lui confèrent d'excellentes performances. Dans les applications pratiques, Laravel9 convient aux projets complexes qui nécessitent de la flexibilité et des fonctions puissantes, tandis que CodeIgniter4 convient au développement rapide et aux petites applications.

Les dernières versions d'Apple des systèmes iOS18, iPadOS18 et macOS Sequoia ont ajouté une fonctionnalité importante à l'application Photos, conçue pour aider les utilisateurs à récupérer facilement des photos et des vidéos perdues ou endommagées pour diverses raisons. La nouvelle fonctionnalité introduit un album appelé "Récupéré" dans la section Outils de l'application Photos qui apparaîtra automatiquement lorsqu'un utilisateur a des photos ou des vidéos sur son appareil qui ne font pas partie de sa photothèque. L'émergence de l'album « Récupéré » offre une solution aux photos et vidéos perdues en raison d'une corruption de la base de données, d'une application d'appareil photo qui n'enregistre pas correctement dans la photothèque ou d'une application tierce gérant la photothèque. Les utilisateurs n'ont besoin que de quelques étapes simples

En février de cette année, Google a lancé le grand modèle multimodal Gemini 1.5, qui a considérablement amélioré les performances et la vitesse grâce à l'ingénierie et à l'optimisation de l'infrastructure, à l'architecture MoE et à d'autres stratégies. Avec un contexte plus long, des capacités de raisonnement plus fortes et une meilleure gestion du contenu multimodal. Ce vendredi, Google DeepMind a officiellement publié le rapport technique de Gemini 1.5, qui couvre la version Flash et d'autres mises à jour récentes. Le document fait 153 pages. Lien du rapport technique : https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf Dans ce rapport, Google présente Gemini1

Laravel - Artisan Commands - Laravel 5.7 est livré avec une nouvelle façon de traiter et de tester de nouvelles commandes. Il inclut une nouvelle fonctionnalité de test des commandes artisanales et la démonstration est mentionnée ci-dessous ?

Écrit ci-dessus et compréhension personnelle de l'auteur : Récemment, avec le développement et les percées de la technologie d'apprentissage profond, les modèles de base à grande échelle (Foundation Models) ont obtenu des résultats significatifs dans les domaines du traitement du langage naturel et de la vision par ordinateur. L’application de modèles de base à la conduite autonome présente également de grandes perspectives de développement, susceptibles d’améliorer la compréhension et le raisonnement des scénarios. Grâce à une pré-formation sur un langage riche et des données visuelles, le modèle de base peut comprendre et interpréter divers éléments des scénarios de conduite autonome et effectuer un raisonnement, fournissant ainsi un langage et des commandes d'action pour piloter la prise de décision et la planification. Le modèle de base peut être constitué de données enrichies d'une compréhension du scénario de conduite afin de fournir les rares caractéristiques réalisables dans les distributions à longue traîne qui sont peu susceptibles d'être rencontrées lors d'une conduite de routine et d'une collecte de données.
