Table des matières
不懂技术的人不要对懂技术的人说这很容易实现
您可能感兴趣的文章
Maison php教程 php手册 不懂技术的人不要对懂技术的人说这很容易实现

不懂技术的人不要对懂技术的人说这很容易实现

Jun 13, 2016 am 09:26 AM
技术

不懂技术的人不要对懂技术的人说这很容易实现

“这个网站相当简单,所有你需要做的就是完成X,Y,Z。你看起来应该是技术很好,所以,我相信,你不需要花费太多时间就能把它搭建起来。”

  我时不时的就会收到这样的Email。写这些邮件的人几乎都是跟技术不沾边的人,或正在研究他们的第一个产品。起初,当听到人们这样的话,我总是十分的恼怒。他们在跟谁辩论软件开发所需要的时间?但后来我意识到,即使我自己对自己的项目预测要花去多少开发时间,我也是一筹莫展。如果连我自己都做不好,我何必对那些人恼怒呢?

  真正让我郁闷的不是他们预估的错误。问题在于他们竟然认为自己可以做出正确的估计。作为开发人员,我们经常会发现,在软件开发的问题上,一个外行人会很自然的把复杂的事情估计的很简单。

  这并不是为我们的愤怒找借口。但这引起了另外一个有趣的问题:为什么我们天生的预测复杂性的能力在遇到编程问题时会失灵?

  为了回答这个问题,让我们来认识一下我们的大脑如何估计事情的。有些事情对于一些没有经验的人也很容易预估正确,但有些事情则不然。

  我们来想想观看一个人弹吉他。即使你从来没有弹过吉他,在观看了一场弹奏《玛丽有只小羊羔(Mary had a Little Lamb)》的吉他表演后,你也能大概推测出这很简单,一个人不需要太高的技术就能演奏出来。同样,当观看了有人演奏D大调的《卡农(Pachabel’s Canon)》后,你也很容易推测出,这很复杂,需要很长时间的练习才能演奏的出来。

  为什么我们能够很迅速准确的预估这两首曲子的复杂性呢?这是跟我们用来判断一个事情简单和还是复杂的方法有关的。我们的大脑有一些现成的模式来完成这些事情,首先一个就是根据速度。这种情况下,大脑会辨别每秒钟演奏的东西。根据每秒钟演奏了多少东西,我们很容易有一个直观的判断曲子的复杂度。因为用吉他演奏一首歌是一种物理过程,一种感官上的活动,我们的大脑很容易依此来推测速度,继而转换成复杂度。

  我们还有另外一个天生的推测依据:体积。想想把一个帐篷和一栋公寓放在一起对比。即使一个人从来没有学过建筑学,他也能告诉你通常设计和建造一个帐篷会比设计和建造一栋公寓要简单。为什么?因为我们天生的会使用物理体积作为事物复杂性的一个指标。

  当然。上面说的这两种逻辑分析并不是总是100%的有效。但大多数情况下,人们就是这样干,而且很成功。大多数情况中,我们在对物理过程评估时,我们的大脑会对物理事物进行有效的关联,不需要依赖之前的经验。

  现在让我们来谈谈软件。当一个不懂技术的人试图对软件开发时间进行评估时,有两个很基本的直观指标在辅助他们:以体积为指标的复杂度和以速度为指标的复杂度。但他们没有意识到,软件跟他们想象的不一样。软件本质上不是有形物质。没有体积和速度。它的极小的组成部分可能会时不时的在电脑屏幕上闪现。正因为如此,当面对开发一个web应用时(或任何类型的软件),我们的基本直观感觉失效了。

  这第一点,速度,很显然根本不可能被外行人拿来对软件进行评估。于是很自然的,他们倾向于使用体积指标进行评估。要么是根据描述文档的页数,要么是根据软件的功能用例数或特征数。

  有时候,这种评估手段确实有效!当面对一个静态网站,没有特别的设计要求,外行人很容易用这种方法估计出开发时间。但是,通常情况下,对于软件开发,体积并不能真实有效的反映复杂度。

  不幸的是,对于软件的复杂度,唯一有效的推测方法是依据经验。而且还不是时时都好用。作为一个程序员,我知道,根据我之前开发过的相似的功能特征,我可以估计出现在的这些功能特征各自要多少开发时间。然后,我把总时间加起来,这就得到了完成整个项目需要的大致时间。然而,事实情况中,每个项目在开发过程中都遇到二、三个瓶颈。这些瓶颈会肆意的消耗程序员的大量时间,你在遇到它们之前根本不会有所预见。它们会拖住整个项目,致使工期延后数周甚至数月。

  这些是没有经验的人在评估复杂度时不会理解的。他们不明白在其他事情上都很灵的方法,为什么放到软件开发上就不灵了。所以,下一次当你听到有人说“我想你几天时间就能把它开发出来”时,不管是谁说的,都不要懊恼。深呼吸一下,告诉他这篇文章的地址,自己该干什么还干什么。

您可能感兴趣的文章

  • 在php中分别使用curl的post提交数据的方法和get获取网页数据的方法总结
  • js屏蔽鼠标键盘事件(包括鼠标右键,方向键,退格键,F5刷新键等),兼容IE和firefox
  • js限制只能输入英文字母和数字,不能输入中文和其他特殊字符的办法
  • phpmyadmin 配置文件详细的解释说明
  • 总结mysql服务器查询慢原因与解决方法
  • PHP ob_start()函数的功能要点详细说明
  • 网站上多种url都能访问同样的内容是件危险的事
  • 右击桌面新建文本文档不见了,如何恢复
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Le papier Stable Diffusion 3 est enfin publié, et les détails architecturaux sont révélés. Cela aidera-t-il à reproduire Sora ? Mar 06, 2024 pm 05:34 PM

L'article de StableDiffusion3 est enfin là ! Ce modèle est sorti il ​​y a deux semaines et utilise la même architecture DiT (DiffusionTransformer) que Sora. Il a fait beaucoup de bruit dès sa sortie. Par rapport à la version précédente, la qualité des images générées par StableDiffusion3 a été considérablement améliorée. Il prend désormais en charge les invites multithèmes, et l'effet d'écriture de texte a également été amélioré et les caractères tronqués n'apparaissent plus. StabilityAI a souligné que StableDiffusion3 est une série de modèles avec des tailles de paramètres allant de 800M à 8B. Cette plage de paramètres signifie que le modèle peut être exécuté directement sur de nombreux appareils portables, réduisant ainsi considérablement l'utilisation de l'IA.

Avez-vous vraiment maîtrisé la conversion des systèmes de coordonnées ? Des enjeux multi-capteurs indispensables à la conduite autonome Avez-vous vraiment maîtrisé la conversion des systèmes de coordonnées ? Des enjeux multi-capteurs indispensables à la conduite autonome Oct 12, 2023 am 11:21 AM

Le premier article pilote et clé présente principalement plusieurs systèmes de coordonnées couramment utilisés dans la technologie de conduite autonome, et comment compléter la corrélation et la conversion entre eux, et enfin construire un modèle d'environnement unifié. L'objectif ici est de comprendre la conversion du véhicule en corps rigide de caméra (paramètres externes), la conversion de caméra en image (paramètres internes) et la conversion d'image en unité de pixel. La conversion de 3D en 2D aura une distorsion, une traduction, etc. Points clés : Le système de coordonnées du véhicule et le système de coordonnées du corps de la caméra doivent être réécrits : le système de coordonnées planes et le système de coordonnées des pixels Difficulté : la distorsion de l'image doit être prise en compte. La dé-distorsion et l'ajout de distorsion sont compensés sur le plan de l'image. 2. Introduction Il existe quatre systèmes de vision au total : système de coordonnées du plan de pixels (u, v), système de coordonnées d'image (x, y), système de coordonnées de caméra () et système de coordonnées mondiales (). Il existe une relation entre chaque système de coordonnées,

Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Cet article vous suffit pour en savoir plus sur la conduite autonome et la prédiction de trajectoire ! Feb 28, 2024 pm 07:20 PM

La prédiction de trajectoire joue un rôle important dans la conduite autonome. La prédiction de trajectoire de conduite autonome fait référence à la prédiction de la trajectoire de conduite future du véhicule en analysant diverses données pendant le processus de conduite du véhicule. En tant que module central de la conduite autonome, la qualité de la prédiction de trajectoire est cruciale pour le contrôle de la planification en aval. La tâche de prédiction de trajectoire dispose d'une riche pile technologique et nécessite une connaissance de la perception dynamique/statique de la conduite autonome, des cartes de haute précision, des lignes de voie, des compétences en architecture de réseau neuronal (CNN&GNN&Transformer), etc. Il est très difficile de démarrer ! De nombreux fans espèrent se lancer dans la prédiction de trajectoire le plus tôt possible et éviter les pièges. Aujourd'hui, je vais faire le point sur quelques problèmes courants et des méthodes d'apprentissage introductives pour la prédiction de trajectoire ! Connaissances introductives 1. Existe-t-il un ordre d'entrée pour les épreuves de prévisualisation ? R : Regardez d’abord l’enquête, p

DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! DualBEV : dépassant largement BEVFormer et BEVDet4D, ouvrez le livre ! Mar 21, 2024 pm 05:21 PM

Cet article explore le problème de la détection précise d'objets sous différents angles de vue (tels que la perspective et la vue à vol d'oiseau) dans la conduite autonome, en particulier comment transformer efficacement les caractéristiques de l'espace en perspective (PV) en vue à vol d'oiseau (BEV). implémenté via le module Visual Transformation (VT). Les méthodes existantes sont globalement divisées en deux stratégies : la conversion 2D en 3D et la conversion 3D en 2D. Les méthodes 2D vers 3D améliorent les caractéristiques 2D denses en prédisant les probabilités de profondeur, mais l'incertitude inhérente aux prévisions de profondeur, en particulier dans les régions éloignées, peut introduire des inexactitudes. Alors que les méthodes 3D vers 2D utilisent généralement des requêtes 3D pour échantillonner des fonctionnalités 2D et apprendre les poids d'attention de la correspondance entre les fonctionnalités 3D et 2D via un transformateur, ce qui augmente le temps de calcul et de déploiement.

Le premier modèle mondial de génération de vidéos de scènes de conduite autonomes multi-vues DrivingDiffusion : nouvelles idées pour les données et la simulation BEV Le premier modèle mondial de génération de vidéos de scènes de conduite autonomes multi-vues DrivingDiffusion : nouvelles idées pour les données et la simulation BEV Oct 23, 2023 am 11:13 AM

Quelques réflexions personnelles de l'auteur Dans le domaine de la conduite autonome, avec le développement de sous-tâches/solutions de bout en bout basées sur BEV, les données d'entraînement multi-vues de haute qualité et la construction de scènes de simulation correspondantes sont devenues de plus en plus importantes. En réponse aux problèmes des tâches actuelles, la « haute qualité » peut être divisée en trois aspects : des scénarios à longue traîne dans différentes dimensions : comme les véhicules à courte portée dans les données sur les obstacles et les angles de cap précis lors du découpage des voitures, et les données sur les lignes de voie. . Scènes telles que des courbes avec des courbures différentes ou des rampes/fusions/fusions difficiles à capturer. Celles-ci reposent souvent sur de grandes quantités de données collectées et sur des stratégies complexes d’exploration de données, qui sont coûteuses. Valeur réelle 3D - image hautement cohérente : l'acquisition actuelle des données BEV est souvent affectée par des erreurs d'installation/calibrage du capteur, des cartes de haute précision et l'algorithme de reconstruction lui-même. cela m'a amené à

GSLAM | Une architecture générale et un benchmark GSLAM | Une architecture générale et un benchmark Oct 20, 2023 am 11:37 AM

J'ai soudainement découvert un article vieux de 19 ans GSLAM : A General SLAM Framework and Benchmark open source code : https://github.com/zdzhaoyong/GSLAM Accédez directement au texte intégral et ressentez la qualité de ce travail ~ 1 Technologie SLAM abstraite a remporté de nombreux succès récemment et a attiré de nombreuses entreprises de haute technologie. Cependant, la question de savoir comment s'interfacer avec les algorithmes existants ou émergents pour effectuer efficacement des analyses comparatives en termes de vitesse, de robustesse et de portabilité reste une question. Dans cet article, une nouvelle plateforme SLAM appelée GSLAM est proposée, qui fournit non seulement des capacités d'évaluation, mais fournit également aux chercheurs un moyen utile de développer rapidement leurs propres systèmes SLAM.

'Minecraft' se transforme en une ville IA et les habitants des PNJ jouent comme de vraies personnes 'Minecraft' se transforme en une ville IA et les habitants des PNJ jouent comme de vraies personnes Jan 02, 2024 pm 06:25 PM

Veuillez noter que cet homme carré fronça les sourcils, pensant à l'identité des « invités non invités » devant lui. Il s’est avéré qu’elle se trouvait dans une situation dangereuse, et une fois qu’elle s’en est rendu compte, elle a rapidement commencé une recherche mentale pour trouver une stratégie pour résoudre le problème. Finalement, elle a décidé de fuir les lieux, de demander de l'aide le plus rapidement possible et d'agir immédiatement. En même temps, la personne de l'autre côté pensait la même chose qu'elle... Il y avait une telle scène dans "Minecraft" où tous les personnages étaient contrôlés par l'intelligence artificielle. Chacun d’eux a un cadre identitaire unique. Par exemple, la jeune fille mentionnée précédemment est une coursière de 17 ans mais intelligente et courageuse. Ils ont la capacité de se souvenir, de penser et de vivre comme des humains dans cette petite ville de Minecraft. Ce qui les anime est une toute nouvelle,

Revoir! Fusion profonde de modèles (LLM/modèle de base/apprentissage fédéré/mise au point, etc.) Revoir! Fusion profonde de modèles (LLM/modèle de base/apprentissage fédéré/mise au point, etc.) Apr 18, 2024 pm 09:43 PM

Le 23 septembre, l'article « DeepModelFusion:ASurvey » a été publié par l'Université nationale de technologie de la défense, JD.com et l'Institut de technologie de Pékin. La fusion/fusion de modèles profonds est une technologie émergente qui combine les paramètres ou les prédictions de plusieurs modèles d'apprentissage profond en un seul modèle. Il combine les capacités de différents modèles pour compenser les biais et les erreurs des modèles individuels pour de meilleures performances. La fusion profonde de modèles sur des modèles d'apprentissage profond à grande échelle (tels que le LLM et les modèles de base) est confrontée à certains défis, notamment un coût de calcul élevé, un espace de paramètres de grande dimension, l'interférence entre différents modèles hétérogènes, etc. Cet article divise les méthodes de fusion de modèles profonds existantes en quatre catégories : (1) « Connexion de modèles », qui relie les solutions dans l'espace de poids via un chemin de réduction des pertes pour obtenir une meilleure fusion de modèles initiale.

See all articles