Parse正式发布开源PHP SDK,parsesdk
Parse正式发布开源PHP SDK,parsesdk
Pare 发布 了 Parse PHP SDK ,旨在使Parse能够集成“到一类新的应用程序和不同的使用场景。”另外,该公司声称,这是他们的“第一个面向服务器端语言的SDK,而且是第一个真正开源的SDK。”
到目前为止,Parse提供了若干API库,旨在使前端可以更容易地集成Parse,其中包括对Objective-C、Java、.NET和JavaScript的支持。另外,Parse通过REST在本地公开接口。这些库涵盖了Parse的主要使用场景,这使得开发人员不用“ 为其应用程序需要访问的每个服务重新开发他们自己的后端 ”,比如,需要 管理服务器及编写服务器端代码 。
另一方面,Parse还基于他们自己的JavaScript SDK提供了一个 Cloud Code环境 ,用于服务器端需要一些逻辑的场景。比如,Parse Cloud Code带来的好处之一是, 更新对所有的环境都立即可用,而不需要等到新的应用程序发布,如此一来,功能就可以动态地修改。随着Parse PHP SDK的推出,使用PHP现在也可以获得同样的好处。
Parse PHP SDK与其它Parse SDK结构类似,它围绕ParseObject构建,后者包含无模式且兼容JSON的数据的键值对。PFObject能够被保存、检索、更新和删除。查询通过PFQuery建模,它既允许基本查询,又允许关系查询。另外,Parse还支持 基于角色的访问控制 ,这提供了一种逻辑方法,将对Parse数据有相同访问权限的用户分组。
Niraj Shah是英国伦敦的一名PHP开发人员,他已经创建了一个 Parse PHP SDK简易入门教程 。该教程旨在将事情简单化,Niraj说,Parse PHP SDK的“文档组织不是很好,为了找出完整的解决方案,你可能不得不在文档之间跳来跳去。”
附上 Parse开源php sdk下载地址: http://www.bkjia.com/codes/203051.html
国内
ECSHOP
ECMall
Destoon
MvMmall
————————
国外
MAGENTO
OSCOMMERCE
OSCMAX
ZEN CART
CUBE CART
AGORA CART
discuz,织梦,joomla

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'annotation de texte est le travail d'étiquettes ou de balises correspondant à un contenu spécifique dans le texte. Son objectif principal est d’apporter des informations complémentaires au texte pour une analyse et un traitement plus approfondis, notamment dans le domaine de l’intelligence artificielle. L'annotation de texte est cruciale pour les tâches d'apprentissage automatique supervisées dans les applications d'intelligence artificielle. Il est utilisé pour entraîner des modèles d'IA afin de mieux comprendre les informations textuelles en langage naturel et d'améliorer les performances de tâches telles que la classification de texte, l'analyse des sentiments et la traduction linguistique. Grâce à l'annotation de texte, nous pouvons apprendre aux modèles d'IA à reconnaître les entités dans le texte, à comprendre le contexte et à faire des prédictions précises lorsque de nouvelles données similaires apparaissent. Cet article recommande principalement de meilleurs outils d'annotation de texte open source. 1.LabelStudiohttps://github.com/Hu

L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

Le public familier avec "Westworld" sait que ce spectacle se déroule dans un immense parc à thème pour adultes de haute technologie dans le monde futur. Les robots ont des capacités comportementales similaires à celles des humains, et peuvent se souvenir de ce qu'ils voient et entendent et répéter le scénario principal. Chaque jour, ces robots seront réinitialisés et ramenés à leur état initial. Après la publication de l'article de Stanford « Generative Agents : Interactive Simulacra of Human Behaviour », ce scénario ne se limite plus aux films et aux séries télévisées. L'IA a réussi à le reproduire. scène dans la « ville virtuelle » de Smallville 》Aperçu de l'adresse du papier cartographique : https://arxiv.org/pdf/2304.03442v1.pdf

La technologie de détection et de reconnaissance des visages est déjà une technologie relativement mature et largement utilisée. Actuellement, le langage d'application Internet le plus utilisé est JS. La mise en œuvre de la détection et de la reconnaissance faciale sur le front-end Web présente des avantages et des inconvénients par rapport à la reconnaissance faciale back-end. Les avantages incluent la réduction de l'interaction réseau et de la reconnaissance en temps réel, ce qui réduit considérablement le temps d'attente des utilisateurs et améliore l'expérience utilisateur. Les inconvénients sont les suivants : il est limité par la taille du modèle et la précision est également limitée ; Comment utiliser js pour implémenter la détection de visage sur le web ? Afin de mettre en œuvre la reconnaissance faciale sur le Web, vous devez être familier avec les langages et technologies de programmation associés, tels que JavaScript, HTML, CSS, WebRTC, etc. Dans le même temps, vous devez également maîtriser les technologies pertinentes de vision par ordinateur et d’intelligence artificielle. Il convient de noter qu'en raison de la conception du côté Web

Nouveau SOTA pour des capacités de compréhension de documents multimodaux ! L'équipe Alibaba mPLUG a publié le dernier travail open source mPLUG-DocOwl1.5, qui propose une série de solutions pour relever les quatre défis majeurs que sont la reconnaissance de texte d'image haute résolution, la compréhension générale de la structure des documents, le suivi des instructions et l'introduction de connaissances externes. Sans plus tarder, examinons d’abord les effets. Reconnaissance et conversion en un clic de graphiques aux structures complexes au format Markdown : Des graphiques de différents styles sont disponibles : Une reconnaissance et un positionnement de texte plus détaillés peuvent également être facilement traités : Des explications détaillées sur la compréhension du document peuvent également être données : Vous savez, « Compréhension du document " est actuellement un scénario important pour la mise en œuvre de grands modèles linguistiques. Il existe de nombreux produits sur le marché pour aider à la lecture de documents. Certains d'entre eux utilisent principalement des systèmes OCR pour la reconnaissance de texte et coopèrent avec LLM pour le traitement de texte.

Permettez-moi de vous présenter le dernier projet open source AIGC-AnimagineXL3.1. Ce projet est la dernière itération du modèle texte-image sur le thème de l'anime, visant à offrir aux utilisateurs une expérience de génération d'images d'anime plus optimisée et plus puissante. Dans AnimagineXL3.1, l'équipe de développement s'est concentrée sur l'optimisation de plusieurs aspects clés pour garantir que le modèle atteigne de nouveaux sommets en termes de performances et de fonctionnalités. Premièrement, ils ont élargi les données d’entraînement pour inclure non seulement les données des personnages du jeu des versions précédentes, mais également les données de nombreuses autres séries animées bien connues dans l’ensemble d’entraînement. Cette décision enrichit la base de connaissances du modèle, lui permettant de mieux comprendre les différents styles et personnages d'anime. AnimagineXL3.1 introduit un nouvel ensemble de balises et d'esthétiques spéciales

Le FP8 et la précision de quantification inférieure en virgule flottante ne sont plus le « brevet » du H100 ! Lao Huang voulait que tout le monde utilise INT8/INT4, et l'équipe Microsoft DeepSpeed a commencé à exécuter FP6 sur A100 sans le soutien officiel de NVIDIA. Les résultats des tests montrent que la quantification FP6 de la nouvelle méthode TC-FPx sur A100 est proche ou parfois plus rapide que celle de INT4, et a une précision supérieure à celle de cette dernière. En plus de cela, il existe également une prise en charge de bout en bout des grands modèles, qui ont été open source et intégrés dans des cadres d'inférence d'apprentissage profond tels que DeepSpeed. Ce résultat a également un effet immédiat sur l'accélération des grands modèles : dans ce cadre, en utilisant une seule carte pour exécuter Llama, le débit est 2,65 fois supérieur à celui des cartes doubles. un

Adresse papier : https://arxiv.org/abs/2307.09283 Adresse code : https://github.com/THU-MIG/RepViTRepViT fonctionne bien dans l'architecture ViT mobile et présente des avantages significatifs. Ensuite, nous explorons les contributions de cette étude. Il est mentionné dans l'article que les ViT légers fonctionnent généralement mieux que les CNN légers sur les tâches visuelles, principalement en raison de leur module d'auto-attention multi-têtes (MSHA) qui permet au modèle d'apprendre des représentations globales. Cependant, les différences architecturales entre les ViT légers et les CNN légers n'ont pas été entièrement étudiées. Dans cette étude, les auteurs ont intégré des ViT légers dans le système efficace.
