Maison > Tutoriel système > Linux > Préparer les registres d'environnement et la mémoire du code source des elfes et des nains et du niveau du code source du signal pour une exécution étape par étape

Préparer les registres d'environnement et la mémoire du code source des elfes et des nains et du niveau du code source du signal pour une exécution étape par étape

WBOY
Libérer: 2024-06-02 09:10:42
original
714 Les gens l'ont consulté

Définir des points d'arrêt sur les adresses de mémoire vidéo semble sympa, mais cela ne fournit pas l'outil le plus convivial. Nous espérons également pouvoir définir des points d'arrêt sur les lignes de code source et les adresses d'entrée de fonction afin de pouvoir déboguer au même niveau de concret que le code.

Cet article ajoutera des points d'arrêt au niveau de la source à notre débogueur. Avec toutes les fonctionnalités que nous prenons déjà en charge, c’est beaucoup plus facile qu’il n’y paraît au premier abord. Nous ajouterons également une commande pour obtenir le type et l'adresse d'un symbole, ce qui est utile pour localiser du code ou des données et comprendre les concepts de liaison.

Index des séries

Avec la sortie des articles précédents, ce lien prendra progressivement effet.

Préparez le registre des points d'arrêt de l'environnement et la mémoire vidéo du code source des elfes et des nains et du niveau du code source du signal pour exécuter la pile d'appels du point d'arrêt au niveau du code source et lire les étapes suivantes des variables

Point d'arrêt

NAIN

Elfes et nains Cet article décrit le fonctionnement des informations de débogage DWARF et comment les utiliser pour mapper le code machine au code source de haut niveau. Rappelez-vous que DWARF contient la plage d'adresses d'une fonction et une table de lignes qui vous permet de convertir les emplacements de code entre les couches de représentation. Nous utiliserons cette fonctionnalité pour implémenter nos points d'arrêt.

linux vector 头文件_头文件vector报错_头文件vector

Entrée de fonction

Si vous considérez les principes du système d'exploitation Linux tels que la surcharge, les fonctions membres, etc., définir des points d'arrêt sur les noms de fonctions peut être un peu compliqué, et nous parcourrons toutes les unités de compilation et rechercherons les fonctions qui correspondent au nom que nous recherchons. Les informations DWARF sont les suivantes :

DW_TAG_compile_unit
DW_AT_producerclang version 3.9.1 (tags/RELEASE_391/final)
DW_AT_languageDW_LANG_C_plus_plus
DW_AT_name/super/secret/path/MiniDbg/examples/variable.cpp
DW_AT_stmt_list 0x00000000
DW_AT_comp_dir/super/secret/path/MiniDbg/build
DW_AT_low_pc0x00400670
DW_AT_high_pc 0x0040069c
LOCAL_SYMBOLS:
DW_TAG_subprogram
DW_AT_low_pc0x00400670
DW_AT_high_pc 0x0040069c
DW_AT_namefoo
...
...
DW_TAG_subprogram
DW_AT_low_pc0x00400700
DW_AT_high_pc 0x004007a0
DW_AT_namebar
...
Copier après la connexion

Nous voulons faire correspondre DW_AT_name et utiliser DW_AT_low_pc (l'adresse de départ de la fonction) pour définir notre point d'arrêt.

void debugger::set_breakpoint_at_function(const std::string& name) {
for (const auto& cu : m_dwarf.compilation_units()) {
for (const auto& die : cu.root()) {
if (die.has(dwarf::DW_AT::name) && at_name(die) == name) {
auto low_pc = at_low_pc(die);
auto entry = get_line_entry_from_pc(low_pc);
++entry; //skip prologue
set_breakpoint_at_address(entry->address);
}
}
}
}
Copier après la connexion

La seule chose qui semble un peu étrange dans ce code est l'entrée ++. Le problème est que le DW_AT_low_pc de la fonction ne pointe pas vers l'adresse de début du code utilisateur de la fonction, il pointe vers le début du prologue. Le compilateur génère généralement le prologue et l'épilogue d'une fonction, qui sont utilisés pour sauvegarder et restaurer la pile, faire fonctionner le pointeur de la table de pile, etc. Cela ne nous est pas très utile, nous incrémentons donc la ligne d'entrée de un pour obtenir la première ligne de code utilisateur au lieu du prologue. La table de lignes DWARF a en fait une fonctionnalité permettant de marquer l'entrée comme première ligne après le prologue de la fonction, mais tous les compilateurs ne la génèrent pas, j'ai donc utilisé la méthode originale.

Ligne de code source

头文件vector报错_头文件vector_linux vector 头文件

Pour définir un point d'arrêt sur une ligne de code source de haut niveau, nous devons convertir le numéro de ligne en adresse dans DWARF. Nous allons parcourir les unités de compilation, en recherchant une dont le nom correspond au fichier donné, puis rechercher l'entrée correspondant à la ligne donnée.

DWARF ressemble un peu à ça :

.debug_line: line number info for a single cu
Source lines (from CU-DIE at .debug_info offset 0x0000000b):
NS new statement, BB new basic block, ET end of text sequence
PE prologue end, EB epilogue begin
IS=val ISA number, DI=val discriminator value
[lno,col] NS BB ET PE EB IS= DI= uri: "filepath"
0x004004a7 [ 1, 0] NS uri: "/super/secret/path/a.hpp"
0x004004ab [ 2, 0] NS
0x004004b2 [ 3, 0] NS
0x004004b9 [ 4, 0] NS
0x004004c1 [ 5, 0] NS
0x004004c3 [ 1, 0] NS uri: "/super/secret/path/b.hpp"
0x004004c7 [ 2, 0] NS
0x004004ce [ 3, 0] NS
0x004004d5 [ 4, 0] NS
0x004004dd [ 5, 0] NS
0x004004df [ 4, 0] NS uri: "/super/secret/path/ab.cpp"
0x004004e3 [ 5, 0] NS
0x004004e8 [ 6, 0] NS
0x004004ed [ 7, 0] NS
0x004004f4 [ 7, 0] NS ET
Copier après la connexion

Donc, si nous voulons définir un point d'arrêt sur la ligne 5 de ab.cpp, nous rechercherons l'entrée liée à la ligne (0x004004e3) et définirons un point d'arrêt.

void debugger::set_breakpoint_at_source_line(const std::string& file, unsigned line) {
for (const auto& cu : m_dwarf.compilation_units()) {
if (is_suffix(file, at_name(cu.root()))) {
const auto& lt = cu.get_line_table();
for (const auto& entry : lt) {
if (entry.is_stmt && entry.line == line) {
set_breakpoint_at_address(entry.address);
return;
}
}
}
}
}
Copier après la connexion

我这儿做了is_suffixhack,这样你可以输入c.cpp代表a/b/c.cpp。其实你实际上应当使用大小写敏感路径处理库或则其它东西,而且我比较懒。entry.is_stmt是检测行表入口是否被标记为一个句子的开头,这是由编译器按照它觉得是断点的最佳目标的地址设置的。

符号查找

头文件vector报错_头文件vector_linux vector 头文件

当我们在对象文件层时,符号是王者。函数用符号命名红旗linux系统,全局变量用符号命名,你得到一个符号,我们得到一个符号,每位人都得到一个符号。在给定的对象文件中linux vector 头文件,一些符号可能引用其他对象文件或共享库,链接器将从符号引用创建一个可执行程序。

可以在正确命名的符号表中查找符号,它储存在二补码文件的ELF部份中。辛运的是,libelfin有一个不错的插口来做这件事,所以我们不须要自己处理所有的ELF的事情。为了让你晓得我们在处理哪些,下边是一个二补码文件的.symtab部份的轮询,它由readelf生成:

Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000400238 0 SECTION LOCAL DEFAULT 1
2: 0000000000400254 0 SECTION LOCAL DEFAULT 2
3: 0000000000400278 0 SECTION LOCAL DEFAULT 3
4: 00000000004002c8 0 SECTION LOCAL DEFAULT 4
5: 0000000000400430 0 SECTION LOCAL DEFAULT 5
6: 00000000004004e4 0 SECTION LOCAL DEFAULT 6
7: 0000000000400508 0 SECTION LOCAL DEFAULT 7
8: 0000000000400528 0 SECTION LOCAL DEFAULT 8
9: 0000000000400558 0 SECTION LOCAL DEFAULT 9
10: 0000000000400570 0 SECTION LOCAL DEFAULT 10
11: 0000000000400714 0 SECTION LOCAL DEFAULT 11
12: 0000000000400720 0 SECTION LOCAL DEFAULT 12
13: 0000000000400724 0 SECTION LOCAL DEFAULT 13
14: 0000000000400750 0 SECTION LOCAL DEFAULT 14
15: 0000000000600e18 0 SECTION LOCAL DEFAULT 15
16: 0000000000600e20 0 SECTION LOCAL DEFAULT 16
17: 0000000000600e28 0 SECTION LOCAL DEFAULT 17
18: 0000000000600e30 0 SECTION LOCAL DEFAULT 18
19: 0000000000600ff0 0 SECTION LOCAL DEFAULT 19
20: 0000000000601000 0 SECTION LOCAL DEFAULT 20
21: 0000000000601018 0 SECTION LOCAL DEFAULT 21
22: 0000000000601028 0 SECTION LOCAL DEFAULT 22
23: 0000000000000000 0 SECTION LOCAL DEFAULT 23
24: 0000000000000000 0 SECTION LOCAL DEFAULT 24
25: 0000000000000000 0 SECTION LOCAL DEFAULT 25
26: 0000000000000000 0 SECTION LOCAL DEFAULT 26
27: 0000000000000000 0 SECTION LOCAL DEFAULT 27
28: 0000000000000000 0 SECTION LOCAL DEFAULT 28
29: 0000000000000000 0 SECTION LOCAL DEFAULT 29
30: 0000000000000000 0 SECTION LOCAL DEFAULT 30
31: 0000000000000000 0 FILE LOCAL DEFAULT ABS init.c
32: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
33: 0000000000600e28 0 OBJECT LOCAL DEFAULT 17 __JCR_LIST__
34: 00000000004005a0 0 FUNC LOCAL DEFAULT 10 deregister_tm_clones
35: 00000000004005e0 0 FUNC LOCAL DEFAULT 10 register_tm_clones
36: 0000000000400620 0 FUNC LOCAL DEFAULT 10 __do_global_dtors_aux
37: 0000000000601028 1 OBJECT LOCAL DEFAULT 22 completed.6917
38: 0000000000600e20 0 OBJECT LOCAL DEFAULT 16 __do_global_dtors_aux_fin
39: 0000000000400640 0 FUNC LOCAL DEFAULT 10 frame_dummy
40: 0000000000600e18 0 OBJECT LOCAL DEFAULT 15 __frame_dummy_init_array_
41: 0000000000000000 0 FILE LOCAL DEFAULT ABS /super/secret/path/MiniDbg/
42: 0000000000000000 0 FILE LOCAL DEFAULT ABS crtstuff.c
43: 0000000000400818 0 OBJECT LOCAL DEFAULT 14 __FRAME_END__
44: 0000000000600e28 0 OBJECT LOCAL DEFAULT 17 __JCR_END__
45: 0000000000000000 0 FILE LOCAL DEFAULT ABS
46: 0000000000400724 0 NOTYPE LOCAL DEFAULT 13 __GNU_EH_FRAME_HDR
47: 0000000000601000 0 OBJECT LOCAL DEFAULT 20 _GLOBAL_OFFSET_TABLE_
48: 0000000000601028 0 OBJECT LOCAL DEFAULT 21 __TMC_END__
49: 0000000000601020 0 OBJECT LOCAL DEFAULT 21 __dso_handle
50: 0000000000600e20 0 NOTYPE LOCAL DEFAULT 15 __init_array_end
51: 0000000000600e18 0 NOTYPE LOCAL DEFAULT 15 __init_array_start
52: 0000000000600e30 0 OBJECT LOCAL DEFAULT 18 _DYNAMIC
53: 0000000000601018 0 NOTYPE WEAK DEFAULT 21 data_start
54: 0000000000400710 2 FUNC GLOBAL DEFAULT 10 __libc_csu_fini
55: 0000000000400570 43 FUNC GLOBAL DEFAULT 10 _start
56: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
57: 0000000000400714 0 FUNC GLOBAL DEFAULT 11 _fini
58: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_
59: 0000000000400720 4 OBJECT GLOBAL DEFAULT 12 _IO_stdin_used
60: 0000000000601018 0 NOTYPE GLOBAL DEFAULT 21 __data_start
61: 00000000004006a0 101 FUNC GLOBAL DEFAULT 10 __libc_csu_init
62: 0000000000601028 0 NOTYPE GLOBAL DEFAULT 22 __bss_start
63: 0000000000601030 0 NOTYPE GLOBAL DEFAULT 22 _end
64: 0000000000601028 0 NOTYPE GLOBAL DEFAULT 21 _edata
65: 0000000000400670 44 FUNC GLOBAL DEFAULT 10 main
66: 0000000000400558 0 FUNC GLOBAL DEFAULT 9 _init
Copier après la connexion

你可以在对象文件中见到用于设置环境的好多符号,最后还可以见到main符号。

我们对符号的类型、名称和值(地址)感兴趣。我们有一个该类型的symbol_type枚举,并使用一个std::string作为名称,std::uintptr_t作为地址:

enum class symbol_type {
notype, // No type (e.g., absolute symbol)
object, // Data object
func, // Function entry point
section, // Symbol is associated with a section
file, // Source file associated with the
}; // object file
std::string to_string (symbol_type st) {
switch (st) {
case symbol_type::notype: return "notype";
case symbol_type::object: return "object";
case symbol_type::func: return "func";
case symbol_type::section: return "section";
case symbol_type::file: return "file";
}
}
struct symbol {
symbol_type type;
std::string name;
std::uintptr_t addr;
};
Copier après la connexion

我们须要将从libelfin获得的符号类型映射到我们的枚举,由于我们不希望依赖关系破环这个插口。辛运的是,我为所有的东西选了同样的名子,所以这样很简单:

symbol_type to_symbol_type(elf::stt sym) {
switch (sym) {
case elf::stt::notype: return symbol_type::notype;
case elf::stt::object: return symbol_type::object;
case elf::stt::func: return symbol_type::func;
case elf::stt::section: return symbol_type::section;
case elf::stt::file: return symbol_type::file;
default: return symbol_type::notype;
}
};
Copier après la connexion

最后我们要查找符号。为了说明的目的,我循环查找符号表的ELF部份,之后搜集我在其中找到的任意符号到std::vector中。更智能的实现可以构建从名称到符号的映射,这样你只须要查看一次数据就行了。

std::vector debugger::lookup_symbol(const std::string& name) {
std::vector syms;
for (auto &sec : m_elf.sections()) {
if (sec.get_hdr().type != elf::sht::symtab && sec.get_hdr().type != elf::sht::dynsym)
continue;
for (auto sym : sec.as_symtab()) {
if (sym.get_name() == name) {
auto &d = sym.get_data();
syms.push_back(symbol{to_symbol_type(d.type()), sym.get_name(), d.value});
}
}
}
return syms;
}
Copier après la connexion

添加命令

一如往常,我们须要添加一些更多的命令来向用户曝露功能。对于断点,我使用GDB风格的插口linux vector 头文件,其中断点类型是通过你传递的参数推论的,而不用要求显式切换:

else if(is_prefix(command, "break")) {
if (args[1][0] == '0' && args[1][1] == 'x') {
std::string addr {args[1], 2};
set_breakpoint_at_address(std::stol(addr, 0, 16));
}
else if (args[1].find(':') != std::string::npos) {
auto file_and_line = split(args[1], ':');
set_breakpoint_at_source_line(file_and_line[0], std::stoi(file_and_line[1]));
}
else {
set_breakpoint_at_function(args[1]);
}
}
Copier après la connexion

对于符号,我们将查找符号并复印出我们发觉的任何匹配项:

else if(is_prefix(command, "symbol")) {
auto syms = lookup_symbol(args[1]);
for (auto&& s : syms) {
std::cout << s.name << &#039; &#039; << to_string(s.type) << " 0x" << std::hex << s.addr << std::endl;
}
}
Copier après la connexion

测试一下

在一个简单的二补码文件上启动调试器,并设置源代码级别的断点。在一些foo函数上设置一个断点,见到我的调试器停在它前面是我这个项目最有价值的时刻之一。

符号查找可以通过在程序中添加一些函数或全局变量并查找它们的名称来进行测试。请注意,假若你正在编译C++代码,你还须要考虑名称重整。

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:itcool.net
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal