


Applications d'intelligence artificielle et d'apprentissage automatique du C++ dans l'IoT et les systèmes embarqués
Applications C++ AI/ML dans l'IoT et les systèmes embarqués C++ est un choix populaire pour les applications AI/ML en raison de sa vitesse, de son efficacité et de son accès au matériel sous-jacent. Dans ces systèmes, l'IA/ML a été utilisé pour : Maintenance prédictive Reconnaissance d'images Traitement du langage naturel Optimisation Les avantages du C++ incluent : Vitesse et efficacité Contrôle du matériel Compatibilité multiplateforme Un cas de reconnaissance d'image basé sur C++ montre comment le ML peut être utilisé pour défauts d'inspection et améliorer le contrôle de la qualité.
Applications d'intelligence artificielle et d'apprentissage automatique C++ dans l'IoT et les systèmes embarqués
Introduction
L'Internet des objets (IoT) et les systèmes embarqués sont en plein essor et sont largement utilisés dans diverses applications industrielles. Les technologies d’intelligence artificielle (IA) et d’apprentissage automatique (ML) sont intégrées à ces systèmes pour améliorer leurs capacités et ouvrir de nouvelles possibilités. C++ est un choix populaire pour ces applications en raison de sa vitesse, de son efficacité et de son accès au matériel sous-jacent.
Applications de l'intelligence artificielle et de l'apprentissage automatique dans l'IoT et les systèmes embarqués
Dans l'IoT et les systèmes embarqués, l'IA et le ML ont été utilisés pour :
- Maintenance prédictive : Analyser les données des équipements pour prédire les pannes et effectuer une maintenance préventive .
- Reconnaissance d'images : Détectez et classez les images prises par des appareils intégrés, par exemple pour la surveillance ou le contrôle qualité.
- Traitement du langage naturel : Traitez les entrées en langage naturel des appareils connectés, telles que les commandes vocales ou les messages texte.
- Optimisation : Ajustez les paramètres de l'appareil pour améliorer l'efficacité énergétique, les performances ou la longévité.
Avantages du C++ en IA et ML
C++ présente les avantages suivants en IA et ML :
- Vitesse et efficacité : C++ est un langage compilé qui génère du code haute performance. Ceci est essentiel pour l’IoT et les systèmes embarqués où les ressources des appareils sont limitées.
- Contrôle matériel : C++ donne accès aux fonctions matérielles de bas niveau qui sont essentielles pour interagir avec les capteurs, les actionneurs et d'autres composants matériels dans les systèmes embarqués.
- Compatibilité multiplateforme : C++ peut compiler et s'exécuter sur une variété de plates-formes, y compris des environnements embarqués, ce qui facilite le déploiement de modèles AI/ML sur différents appareils.
Cas pratique : reconnaissance d'images basée sur C++
Considérons un système IoT qui utilise des caméras embarquées pour surveiller la qualité d'une chaîne d'assemblage. Le système est implémenté en C++ et intègre des modèles ML pour la reconnaissance d'images. Le modèle détecte les défauts en analysant les images des produits. Le processus de développement du modèle comprend les étapes suivantes :
- Collecter l'ensemble de données : Collecter des images de produits défectueux et non défectueux.
- Pré-traiter les données : Redimensionnez les images, convertissez les formats et appliquez des techniques d'amélioration.
- Former le modèle : Former le modèle ML à l'aide de l'architecture de réseau neuronal convolutif (CNN).
- Évaluer le modèle : Testez le modèle sur un ensemble de données indépendant pour évaluer sa précision et sa robustesse.
- Déployer des modèles : Intégrer des modèles sur des appareils embarqués pour une reconnaissance d'image en temps réel.
Le système est capable de détecter les défauts dans les images et d'émettre des alertes immédiatement, contribuant ainsi à empêcher les produits défectueux d'entrer sur le marché.
Conclusion
C++ est un choix puissant pour les applications d'IA et de ML dans l'IoT et les systèmes embarqués. Sa vitesse, son efficacité, son contrôle matériel et sa compatibilité multiplateforme le rendent idéal pour les applications critiques. A travers des cas pratiques, nous montrons comment le C++ peut être utilisé pour développer des fonctions de reconnaissance d'images en temps réel et améliorer les capacités de contrôle qualité du système.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

L'annotation d'images est le processus consistant à associer des étiquettes ou des informations descriptives à des images pour donner une signification et une explication plus profondes au contenu de l'image. Ce processus est essentiel à l’apprentissage automatique, qui permet d’entraîner les modèles de vision à identifier plus précisément les éléments individuels des images. En ajoutant des annotations aux images, l'ordinateur peut comprendre la sémantique et le contexte derrière les images, améliorant ainsi la capacité de comprendre et d'analyser le contenu de l'image. L'annotation d'images a un large éventail d'applications, couvrant de nombreux domaines, tels que la vision par ordinateur, le traitement du langage naturel et les modèles de vision graphique. Elle a un large éventail d'applications, telles que l'assistance aux véhicules pour identifier les obstacles sur la route, en aidant à la détection. et le diagnostic des maladies grâce à la reconnaissance d'images médicales. Cet article recommande principalement de meilleurs outils d'annotation d'images open source et gratuits. 1.Makesens

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Cet article présentera comment identifier efficacement le surajustement et le sous-apprentissage dans les modèles d'apprentissage automatique grâce à des courbes d'apprentissage. Sous-ajustement et surajustement 1. Surajustement Si un modèle est surentraîné sur les données de sorte qu'il en tire du bruit, alors on dit que le modèle est en surajustement. Un modèle surajusté apprend chaque exemple si parfaitement qu'il classera mal un exemple inédit/inédit. Pour un modèle surajusté, nous obtiendrons un score d'ensemble d'entraînement parfait/presque parfait et un score d'ensemble/test de validation épouvantable. Légèrement modifié : "Cause du surajustement : utilisez un modèle complexe pour résoudre un problème simple et extraire le bruit des données. Parce qu'un petit ensemble de données en tant qu'ensemble d'entraînement peut ne pas représenter la représentation correcte de toutes les données."

En termes simples, un modèle d’apprentissage automatique est une fonction mathématique qui mappe les données d’entrée à une sortie prédite. Plus précisément, un modèle d'apprentissage automatique est une fonction mathématique qui ajuste les paramètres du modèle en apprenant à partir des données d'entraînement afin de minimiser l'erreur entre la sortie prédite et la véritable étiquette. Il existe de nombreux modèles dans l'apprentissage automatique, tels que les modèles de régression logistique, les modèles d'arbre de décision, les modèles de machines à vecteurs de support, etc. Chaque modèle a ses types de données et ses types de problèmes applicables. Dans le même temps, il existe de nombreux points communs entre les différents modèles, ou il existe une voie cachée pour l’évolution du modèle. En prenant comme exemple le perceptron connexionniste, en augmentant le nombre de couches cachées du perceptron, nous pouvons le transformer en un réseau neuronal profond. Si une fonction noyau est ajoutée au perceptron, elle peut être convertie en SVM. celui-ci

Dans les années 1950, l’intelligence artificielle (IA) est née. C’est à ce moment-là que les chercheurs ont découvert que les machines pouvaient effectuer des tâches similaires à celles des humains, comme penser. Plus tard, dans les années 1960, le Département américain de la Défense a financé l’intelligence artificielle et créé des laboratoires pour poursuivre son développement. Les chercheurs trouvent des applications à l’intelligence artificielle dans de nombreux domaines, comme l’exploration spatiale et la survie dans des environnements extrêmes. L'exploration spatiale est l'étude de l'univers, qui couvre l'ensemble de l'univers au-delà de la terre. L’espace est classé comme environnement extrême car ses conditions sont différentes de celles de la Terre. Pour survivre dans l’espace, de nombreux facteurs doivent être pris en compte et des précautions doivent être prises. Les scientifiques et les chercheurs pensent qu'explorer l'espace et comprendre l'état actuel de tout peut aider à comprendre le fonctionnement de l'univers et à se préparer à d'éventuelles crises environnementales.

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises
