


Comment construire des modèles de machine learning en C++ et traiter des données à grande échelle ?
如何在 C++ 中构建机器学习模型并处理大规模数据:构建模型:使用 TensorFlow 库定义模型架构并构建计算图。处理大规模数据:使用 TensorFlow 的 Datasets API 有效地加载和预处理大规模数据集。训练模型:创建 TensorProtos 来存储数据,并使用 Session 训练模型。评估模型:运行 Session 以评估模型的准确性。
如何在 C++ 中构建机器学习模型并处理大规模数据
简介
C++ 以其高性能和可扩展性而闻名,是构建机器学习模型并处理大规模数据集的理想选择。本文将指导您如何在 C++ 中实现机器学习管道,重点关注大规模数据的处理。
实战案例
我们将使用 C++ 和 TensorFlow 库构建一个用于图像分类的机器学习模型。数据集由来自 CIFAR-10 数据集的 60,000 张图像组成。
构建模型
// 导入 TensorFlow 库 #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/graph_def_builder.h" #include "tensorflow/core/public/tensor.h" // 定义模型架构 GraphDefBuilder builder; auto input = builder.AddPlaceholder(DataType::DT_FLOAT, TensorShape({1, 32, 32, 3})); auto conv1 = builder.Conv2D(input, 32, {3, 3}, {1, 1}, "SAME"); auto conv2 = builder.Conv2D(conv1, 64, {3, 3}, {1, 1}, "SAME"); auto pool = builder.MaxPool(conv2, {2, 2}, {2, 2}, "SAME"); auto flattened = builder.Flatten(pool); auto dense1 = builder.FullyConnected(flattened, 128, "relu"); auto dense2 = builder.FullyConnected(dense1, 10, "softmax"); // 将计算图构建成 TensorFlow 会话 Session session(Env::Default(), GraphDef(builder.Build()));
处理大规模数据
我们使用 TensorFlow 的 [Datasets](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) API 来处理大规模数据,该 API 提供了高效读取和预处理数据的途径:
// 从 CIFAR-10 数据集加载数据 auto dataset = Dataset::FromTensorSlices(data).Batch(16);
训练模型
// 创建 TensorProtos 以保存图像和标签数据 Tensor image_tensor(DataType::DT_FLOAT, TensorShape({16, 32, 32, 3})); Tensor label_tensor(DataType::DT_INT32, TensorShape({16})); // 训练模型 for (int i = 0; i < num_epochs; i++) { dataset->GetNext(&image_tensor, &label_tensor); session.Run({{{"input", image_tensor}, {"label", label_tensor}}}, nullptr); }
评估模型
Tensor accuracy_tensor(DataType::DT_FLOAT, TensorShape({})); session.Run({}, {{"accuracy", &accuracy_tensor}}); cout << "Model accuracy: " << accuracy_tensor.scalar<float>() << endl;
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Dans les domaines de l’apprentissage automatique et de la science des données, l’interprétabilité des modèles a toujours été au centre des préoccupations des chercheurs et des praticiens. Avec l'application généralisée de modèles complexes tels que l'apprentissage profond et les méthodes d'ensemble, la compréhension du processus décisionnel du modèle est devenue particulièrement importante. Explainable AI|XAI contribue à renforcer la confiance dans les modèles d'apprentissage automatique en augmentant la transparence du modèle. L'amélioration de la transparence des modèles peut être obtenue grâce à des méthodes telles que l'utilisation généralisée de plusieurs modèles complexes, ainsi que les processus décisionnels utilisés pour expliquer les modèles. Ces méthodes incluent l'analyse de l'importance des caractéristiques, l'estimation de l'intervalle de prédiction du modèle, les algorithmes d'interprétabilité locale, etc. L'analyse de l'importance des fonctionnalités peut expliquer le processus de prise de décision du modèle en évaluant le degré d'influence du modèle sur les fonctionnalités d'entrée. Estimation de l’intervalle de prédiction du modèle

Les défis courants rencontrés par les algorithmes d'apprentissage automatique en C++ incluent la gestion de la mémoire, le multithread, l'optimisation des performances et la maintenabilité. Les solutions incluent l'utilisation de pointeurs intelligents, de bibliothèques de threads modernes, d'instructions SIMD et de bibliothèques tierces, ainsi que le respect des directives de style de codage et l'utilisation d'outils d'automatisation. Des cas pratiques montrent comment utiliser la bibliothèque Eigen pour implémenter des algorithmes de régression linéaire, gérer efficacement la mémoire et utiliser des opérations matricielles hautes performances.

Compétences en matière de traitement de la structure des Big Data : Chunking : décomposez l'ensemble de données et traitez-le en morceaux pour réduire la consommation de mémoire. Générateur : générez des éléments de données un par un sans charger l'intégralité de l'ensemble de données, adapté à des ensembles de données illimités. Streaming : lisez des fichiers ou interrogez les résultats ligne par ligne, adapté aux fichiers volumineux ou aux données distantes. Stockage externe : pour les ensembles de données très volumineux, stockez les données dans une base de données ou NoSQL.

L'apprentissage automatique est une branche importante de l'intelligence artificielle qui donne aux ordinateurs la possibilité d'apprendre à partir de données et d'améliorer leurs capacités sans être explicitement programmés. L'apprentissage automatique a un large éventail d'applications dans divers domaines, de la reconnaissance d'images et du traitement du langage naturel aux systèmes de recommandation et à la détection des fraudes, et il change notre façon de vivre. Il existe de nombreuses méthodes et théories différentes dans le domaine de l'apprentissage automatique, parmi lesquelles les cinq méthodes les plus influentes sont appelées les « Cinq écoles d'apprentissage automatique ». Les cinq grandes écoles sont l’école symbolique, l’école connexionniste, l’école évolutionniste, l’école bayésienne et l’école analogique. 1. Le symbolisme, également connu sous le nom de symbolisme, met l'accent sur l'utilisation de symboles pour le raisonnement logique et l'expression des connaissances. Cette école de pensée estime que l'apprentissage est un processus de déduction inversée, à travers les connaissances existantes.

MetaFAIR s'est associé à Harvard pour fournir un nouveau cadre de recherche permettant d'optimiser le biais de données généré lors de l'apprentissage automatique à grande échelle. On sait que la formation de grands modèles de langage prend souvent des mois et utilise des centaines, voire des milliers de GPU. En prenant comme exemple le modèle LLaMA270B, sa formation nécessite un total de 1 720 320 heures GPU. La formation de grands modèles présente des défis systémiques uniques en raison de l’ampleur et de la complexité de ces charges de travail. Récemment, de nombreuses institutions ont signalé une instabilité dans le processus de formation lors de la formation des modèles d'IA générative SOTA. Elles apparaissent généralement sous la forme de pics de pertes. Par exemple, le modèle PaLM de Google a connu jusqu'à 20 pics de pertes au cours du processus de formation. Le biais numérique est à l'origine de cette imprécision de la formation,

Traducteur | Revu par Li Rui | Chonglou Les modèles d'intelligence artificielle (IA) et d'apprentissage automatique (ML) deviennent aujourd'hui de plus en plus complexes, et le résultat produit par ces modèles est une boîte noire – impossible à expliquer aux parties prenantes. L'IA explicable (XAI) vise à résoudre ce problème en permettant aux parties prenantes de comprendre comment fonctionnent ces modèles, en s'assurant qu'elles comprennent comment ces modèles prennent réellement des décisions et en garantissant la transparence des systèmes d'IA, la confiance et la responsabilité pour résoudre ce problème. Cet article explore diverses techniques d'intelligence artificielle explicable (XAI) pour illustrer leurs principes sous-jacents. Plusieurs raisons pour lesquelles l’IA explicable est cruciale Confiance et transparence : pour que les systèmes d’IA soient largement acceptés et fiables, les utilisateurs doivent comprendre comment les décisions sont prises

En C++, la mise en œuvre d'algorithmes d'apprentissage automatique comprend : Régression linéaire : utilisée pour prédire des variables continues. Les étapes comprennent le chargement des données, le calcul des poids et des biais, la mise à jour des paramètres et la prédiction. Régression logistique : utilisée pour prédire des variables discrètes. Le processus est similaire à la régression linéaire, mais utilise la fonction sigmoïde pour la prédiction. Machine à vecteurs de support : un puissant algorithme de classification et de régression qui implique le calcul de vecteurs de support et la prédiction d'étiquettes.

1. Contexte de la construction de la plateforme 58 Portraits Tout d'abord, je voudrais partager avec vous le contexte de la construction de la plateforme 58 Portraits. 1. La pensée traditionnelle de la plate-forme de profilage traditionnelle ne suffit plus. La création d'une plate-forme de profilage des utilisateurs s'appuie sur des capacités de modélisation d'entrepôt de données pour intégrer les données de plusieurs secteurs d'activité afin de créer des portraits d'utilisateurs précis. Elle nécessite également l'exploration de données pour comprendre le comportement et les intérêts des utilisateurs. et besoins, et fournir des capacités côté algorithmes ; enfin, il doit également disposer de capacités de plate-forme de données pour stocker, interroger et partager efficacement les données de profil utilisateur et fournir des services de profil. La principale différence entre une plate-forme de profilage d'entreprise auto-construite et une plate-forme de profilage de middle-office est que la plate-forme de profilage auto-construite dessert un seul secteur d'activité et peut être personnalisée à la demande. La plate-forme de mid-office dessert plusieurs secteurs d'activité et est complexe ; modélisation et offre des fonctionnalités plus générales. 2.58 Portraits d'utilisateurs de l'arrière-plan de la construction du portrait sur la plate-forme médiane 58
