


Comparaison des performances de copie et de déplacement de conteneurs dans les bibliothèques de conteneurs C++
Le mouvement du conteneur est plus rapide que la copie, car le mouvement évite la copie des éléments et transfère directement la propriété des éléments. Pour les grands conteneurs, le déplacement du conteneur peut améliorer considérablement les performances.
Comparaison des performances de copie et de déplacement de conteneur dans la bibliothèque de conteneurs C++
En C++, la copie et le déplacement de conteneur sont deux opérations utilisées pour copier le contenu d'un conteneur. Comprendre les différences et les différences de performances entre les deux est essentiel pour optimiser votre code.
Copie d'un conteneur
La copie d'un conteneur crée une nouvelle copie du conteneur qui contient une copie de tous les éléments du conteneur d'origine. Cette opération implique d’effectuer une copie complète de chaque élément, ce qui peut prendre du temps.
std::vector<int> vec1 = {1, 2, 3}; std::vector<int> vec2(vec1); // 拷贝 vec1
Déplacement des conteneurs
Le conteneur déplace "déplace" le contenu du conteneur d'origine dans le nouveau conteneur plutôt que de créer une copie. Il s'agit d'une opération plus légère car elle transfère directement la propriété des éléments d'un conteneur à un autre sans effectuer de copie.
std::vector<int> vec1 = {1, 2, 3}; std::vector<int> vec2 = std::move(vec1); // 移动 vec1
Comparaison des performances
La surcharge de performances de la copie de conteneur est supérieure à celle du déplacement car ce dernier évite l'étape de copie d'élément. Pour les grands conteneurs, le déplacement du conteneur peut améliorer considérablement les performances.
Le code suivant montre une comparaison des temps de copie et de déplacement pour différents types de conteneurs et différentes tailles d'éléments :
#include <ctime> #include <vector> #include <list> int main() { const int iterations = 100000; for (int size = 10000; size <= 100000; size += 10000) { // 创建容器 std::vector<int> vec(size); std::list<int> list(size); // 记录拷贝时间 std::clock_t start = std::clock(); for (int i = 0; i < iterations; i++) { std::vector<int> vecCopy(vec); } std::clock_t end = std::clock(); std::cout << "Vector copy: " << (double)(end - start) / CLOCKS_PER_SEC << "s" << std::endl; start = std::clock(); for (int i = 0; i < iterations; i++) { std::list<int> listCopy(list); } end = std::clock(); std::cout << "List copy: " << (double)(end - start) / CLOCKS_PER_SEC << "s" << std::endl; // 记录移动时间 start = std::clock(); for (int i = 0; i < iterations; i++) { std::vector<int> vecMove(std::move(vec)); } end = std::clock(); std::cout << "Vector move: " << (double)(end - start) / CLOCKS_PER_SEC << "s" << std::endl; start = std::clock(); for (int i = 0; i < iterations; i++) { std::list<int> listMove(std::move(list)); } end = std::clock(); std::cout << "List move: " << (double)(end - start) / CLOCKS_PER_SEC << "s" << std::endl << std::endl; } return 0; }
Output (par exemple, les résultats réels peuvent varier d'un système à l'autre) :
Vector copy: 0.052s List copy: 0.009s Vector move: 0.014s List move: 0.003s ... Vector copy: 0.542s List copy: 0.058s Vector move: 0.082s List move: 0.013s
Comme le montre la sortie, pour pour toute la taille des éléments, le déplacement de conteneurs est beaucoup plus rapide que la copie de conteneurs.
Conclusion
Pour les grands conteneurs, déplacer le conteneur est le premier choix pour copier le conteneur lorsque le conteneur d'origine n'est pas nécessaire. En comprenant la différence entre la copie et le déplacement de conteneurs, vous pouvez prendre des décisions éclairées et optimiser les performances de votre code.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

C Structure des données du langage: La représentation des données de l'arborescence et du graphique est une structure de données hiérarchique composée de nœuds. Chaque nœud contient un élément de données et un pointeur vers ses nœuds enfants. L'arbre binaire est un type spécial d'arbre. Chaque nœud a au plus deux nœuds enfants. Les données représentent StrustReenode {intdata; structTreenode * gauche; structureReode * droite;}; L'opération crée une arborescence d'arborescence arborescence (prédécision, ordre dans l'ordre et ordre ultérieur) Le nœud d'insertion de l'arborescence des arbres de recherche de nœud Graph est une collection de structures de données, où les éléments sont des sommets, et ils peuvent être connectés ensemble via des bords avec des données droites ou peu nombreuses représentant des voisins.

L'article discute de l'utilisation efficace des références de référence en C pour la sémantique de déplacement, le transfert parfait et la gestion des ressources, mettant en évidence les meilleures pratiques et les améliorations des performances. (159 caractères)

La vérité sur les problèmes de fonctionnement des fichiers: l'ouverture des fichiers a échoué: les autorisations insuffisantes, les mauvais chemins de mauvais et les fichiers occupés. L'écriture de données a échoué: le tampon est plein, le fichier n'est pas écrivatif et l'espace disque est insuffisant. Autres FAQ: traversée de fichiers lents, encodage de fichiers texte incorrect et erreurs de lecture de fichiers binaires.

Les plages de c 20 améliorent la manipulation des données avec l'expressivité, la composibilité et l'efficacité. Ils simplifient les transformations complexes et s'intègrent dans les bases de code existantes pour de meilleures performances et maintenabilité.

L'article traite de Dynamic Dispatch in C, ses coûts de performance et les stratégies d'optimisation. Il met en évidence les scénarios où la répartition dynamique a un impact

Le calcul de C35 est essentiellement des mathématiques combinatoires, représentant le nombre de combinaisons sélectionnées parmi 3 des 5 éléments. La formule de calcul est C53 = 5! / (3! * 2!), Qui peut être directement calculé par des boucles pour améliorer l'efficacité et éviter le débordement. De plus, la compréhension de la nature des combinaisons et la maîtrise des méthodes de calcul efficaces est cruciale pour résoudre de nombreux problèmes dans les domaines des statistiques de probabilité, de la cryptographie, de la conception d'algorithmes, etc.

L'article discute de l'utilisation de Move Semantics en C pour améliorer les performances en évitant la copie inutile. Il couvre la mise en œuvre de constructeurs de déplace

Les fonctions de langue C sont la base de la modularisation du code et de la construction de programmes. Ils se composent de déclarations (en-têtes de fonction) et de définitions (corps de fonction). Le langage C utilise des valeurs pour transmettre les paramètres par défaut, mais les variables externes peuvent également être modifiées à l'aide d'adresse Pass. Les fonctions peuvent avoir ou ne pas avoir de valeur de retour et le type de valeur de retour doit être cohérent avec la déclaration. La dénomination de la fonction doit être claire et facile à comprendre, en utilisant un chameau ou une nomenclature de soulignement. Suivez le principe de responsabilité unique et gardez la simplicité de la fonction pour améliorer la maintenabilité et la lisibilité.
