Maison Périphériques technologiques IA 30 fois plus élevé que les méthodes traditionnelles, le modèle d'apprentissage profond Transformer de l'équipe de l'Académie chinoise des sciences prédit les sites d'interaction sucre-protéine

30 fois plus élevé que les méthodes traditionnelles, le modèle d'apprentissage profond Transformer de l'équipe de l'Académie chinoise des sciences prédit les sites d'interaction sucre-protéine

Jun 26, 2024 am 01:17 AM
理论

30 fois plus élevé que les méthodes traditionnelles, le modèle dapprentissage profond Transformer de léquipe de lAcadémie chinoise des sciences prédit les sites dinteraction sucre-protéine

Éditeur | Peau de radis

Les saccharides sont les substances organiques les plus abondantes dans la nature et sont vitales à la vie. Comprendre comment les glucides régulent les protéines au cours des processus physiologiques et pathologiques peut offrir la possibilité de répondre à des questions biologiques clés et de développer de nouveaux traitements.

Cependant, la diversité et la complexité des molécules de sucre posent un défi pour identifier expérimentalement les sites de liaison et d'interaction sucre-protéine.

Ici, une équipe de l'Académie chinoise des sciences a développé DeepGlycanSite, un modèle d'apprentissage profond capable de prédire avec précision les sites de liaison du sucre sur une structure protéique donnée.

DeepGlycanSite intègre les caractéristiques géométriques et évolutives des protéines dans un réseau neuronal à graphe équivariant profond avec une architecture Transformer. Ses performances dépassent considérablement les méthodes avancées précédentes et peuvent prédire efficacement les sites de liaison de diverses molécules de sucre.

Combiné à des études de mutagenèse, DeepGlycanSite révèle le site de reconnaissance de la guanosine-5'-bisphosphate d'importants récepteurs couplés aux protéines G.

Ces résultats démontrent la valeur de DeepGlycanSite pour la prédiction du site de liaison du sucre et peuvent fournir des informations sur les mécanismes moléculaires derrière la régulation du sucre des protéines d'importance thérapeutique.

L'étude s'intitulait « Prédiction très précise du site de liaison des glucides avec DeepGlycanSite » et a été publiée dans « Nature Communications » le 17 juin 2024.

30 fois plus élevé que les méthodes traditionnelles, le modèle dapprentissage profond Transformer de léquipe de lAcadémie chinoise des sciences prédit les sites dinteraction sucre-protéine

Le sucre est omniprésent à la surface des cellules de tous les organismes. Il interagit avec une variété de familles de protéines telles que les lectines, les anticorps, les enzymes et les transporteurs pour réguler des processus biologiques clés tels que la réponse immunitaire, la différenciation cellulaire et le développement neuronal. Comprendre le mécanisme d’interaction entre les glucides et les protéines constitue la base du développement de médicaments à base de glucides.

Cependant, la diversité et la complexité des structures glucidiques, en particulier la variabilité de leurs sites de liaison avec les protéines, posent des défis à l'acquisition de données expérimentales et à la conception de médicaments.

30 fois plus élevé que les méthodes traditionnelles, le modèle dapprentissage profond Transformer de léquipe de lAcadémie chinoise des sciences prédit les sites dinteraction sucre-protéine

Illustration : La complexité des molécules de sucre et la diversité des sites de liaison des sucres. (Source : article)

Dans le passé, les méthodes traditionnelles de prédiction des sites de liaison n'étaient pas adaptées aux molécules de sucre présentant des structures complexes et des changements de taille importants. Ceci, combiné à la rareté des données structurelles complexes sucre-protéine à haute résolution, limite les performances des modèles prédictifs.

Ces dernières années, avec le développement rapide de la Protein Data Bank (PDB) et des ressources ouvertes en glycomique, la communauté universitaire a accumulé des données structurelles sur plus de 19 000 de ces complexes. L’augmentation de ces données de haute qualité permet d’utiliser la technologie de l’IA pour développer des modèles précis de prédiction des sites de liaison du sucre, ce qui devrait accélérer le processus de découverte et d’optimisation des médicaments à base de sucre.

Dans la dernière recherche, l'équipe de l'Académie chinoise des sciences a introduit DeepGlycanSite, un modèle de réseau neuronal à graphique équivariant profond (EGNN) qui peut prédire avec précision les sites de liaison du sucre avec les structures protéiques cibles.

30 fois plus élevé que les méthodes traditionnelles, le modèle dapprentissage profond Transformer de léquipe de lAcadémie chinoise des sciences prédit les sites dinteraction sucre-protéine

Illustration : Présentation de DeepGlycanSite. (Source : article)

L'équipe a exploité des caractéristiques géométriques, telles que l'orientation et la distance à l'intérieur et entre les résidus, ainsi que des informations évolutives pour présenter les protéines sous forme de représentations graphiques au niveau des résidus dans DeepGlycanSite. Combiné avec des blocs Transformer avec un mécanisme d'auto-attention pour améliorer l'extraction de fonctionnalités et la découverte de relations complexes.

Les chercheurs ont comparé DeepGlycanSite aux méthodes informatiques de pointe actuelles sur un ensemble de tests indépendants impliquant plus d'une centaine de protéines uniques liant le sucre.

Les résultats montrent que le coefficient de corrélation de Matthews (MCC) moyen de DeepGlycanSite (0,625) est plus de 30 fois supérieur à celui de StackCBPred (0,018) et dépasse de loin les autres méthodes de prédiction basées sur des séquences.

Les méthodes traditionnelles de liaison des ligands peuvent exclure les sites de liaison des molécules de sucre simples en raison de leur hydrophobie ou de leur petite taille, tandis que DeepGlycanSite peut identifier efficacement ces sites.

30 fois plus élevé que les méthodes traditionnelles, le modèle dapprentissage profond Transformer de léquipe de lAcadémie chinoise des sciences prédit les sites dinteraction sucre-protéine

Illustration : Comparaison des performances du modèle dans la prédiction de différents sites de liaison du sucre. (Source : article)

De plus, DeepGlycanSite fonctionne également bien dans la prédiction de plusieurs sites de liaison du sucre sur les protéines, ce qui est d'une grande valeur pour comprendre comment les glycoconjugués multivalents affectent les interactions sucre-protéine et la régulation des processus biologiques. Par exemple, les glycoconjugués multivalents sont conçus comme des outils chimiques et des médicaments candidats pour influencer l’interaction entre les molécules de sucre et les lectines.

Différent des méthodes traditionnelles qui utilisent uniquement la séquence protéique ou les informations structurelles, DeepGlycanSite prend pleinement en compte les informations géométriques et les caractéristiques évolutives de la protéine, qui peuvent être le facteur clé de ses excellentes performances.

De plus, étant donné la structure chimique d'une molécule de sucre recherchée, DeepGlycanSite peut prédire son site de liaison spécifique.

30 fois plus élevé que les méthodes traditionnelles, le modèle dapprentissage profond Transformer de léquipe de lAcadémie chinoise des sciences prédit les sites dinteraction sucre-protéine

Illustration : Interrogez la prédiction de sites de liaison spécifiques des sucres. (Source : article)

Les chercheurs ont exploré l'application de DeepGlycanSite aux récepteurs couplés aux protéines G (GPCR) fonctionnellement importants. En utilisant la structure protéique et la structure chimique des glucides prédites par AlphaFold2, DeepGlycanSite a détecté avec succès le site de liaison spécifique du GDP-Fuc sur le P2Y14 humain.

30 fois plus élevé que les méthodes traditionnelles, le modèle dapprentissage profond Transformer de léquipe de lAcadémie chinoise des sciences prédit les sites dinteraction sucre-protéine

Illustration : Vérification expérimentale de DeepGlycanSite. (Source : article)

Bien que la qualité des chaînes latérales prédites d'AlphaFold2 doive être améliorée, DeepGlycanSite s'appuie moins sur la précision de la structure des protéines et est capable d'utiliser les structures protéiques prédites pour fournir des informations sur les interactions sucre-protéine.

En résumé, la validation de DeepGlycanSite dans des ensembles de tests indépendants et des études de cas in vitro montre qu'il s'agit d'un outil efficace pour la prédiction du site de liaison du sucre. Les chercheurs peuvent utiliser DeepGlycanSite pour prédire les poches de liaison au sucre sur les protéines cibles, faisant ainsi progresser la compréhension des interactions sucre-protéine.

Les saccharides jouent un rôle clé dans les fonctions biologiques. DeepGlycanSite aide non seulement à analyser les fonctions biologiques des molécules de sucre et des protéines liant le sucre, mais fournit également un outil puissant pour le développement de médicaments à base de sucre.

Lien papier :https://www.nature.com/articles/s41467-024-49516-2

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Repoussant les limites de la détection de défauts traditionnelle, « Defect Spectrum » permet pour la première fois une détection de défauts industriels d'une ultra haute précision et d'une sémantique riche. Repoussant les limites de la détection de défauts traditionnelle, « Defect Spectrum » permet pour la première fois une détection de défauts industriels d'une ultra haute précision et d'une sémantique riche. Jul 26, 2024 pm 05:38 PM

Dans la fabrication moderne, une détection précise des défauts est non seulement la clé pour garantir la qualité des produits, mais également la clé de l’amélioration de l’efficacité de la production. Cependant, les ensembles de données de détection de défauts existants manquent souvent de précision et de richesse sémantique requises pour les applications pratiques, ce qui rend les modèles incapables d'identifier des catégories ou des emplacements de défauts spécifiques. Afin de résoudre ce problème, une équipe de recherche de premier plan composée de l'Université des sciences et technologies de Hong Kong, Guangzhou et de Simou Technology a développé de manière innovante l'ensemble de données « DefectSpectrum », qui fournit une annotation à grande échelle détaillée et sémantiquement riche des défauts industriels. Comme le montre le tableau 1, par rapport à d'autres ensembles de données industrielles, l'ensemble de données « DefectSpectrum » fournit le plus grand nombre d'annotations de défauts (5 438 échantillons de défauts) et la classification de défauts la plus détaillée (125 catégories de défauts).

Le modèle de dialogue NVIDIA ChatQA a évolué vers la version 2.0, avec la longueur du contexte mentionnée à 128 Ko Le modèle de dialogue NVIDIA ChatQA a évolué vers la version 2.0, avec la longueur du contexte mentionnée à 128 Ko Jul 26, 2024 am 08:40 AM

La communauté ouverte LLM est une époque où une centaine de fleurs fleurissent et s'affrontent. Vous pouvez voir Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 et bien d'autres. excellents interprètes. Cependant, par rapport aux grands modèles propriétaires représentés par le GPT-4-Turbo, les modèles ouverts présentent encore des lacunes importantes dans de nombreux domaines. En plus des modèles généraux, certains modèles ouverts spécialisés dans des domaines clés ont été développés, tels que DeepSeek-Coder-V2 pour la programmation et les mathématiques, et InternVL pour les tâches de langage visuel.

Formation avec des millions de données cristallines pour résoudre le problème de la phase cristallographique, la méthode d'apprentissage profond PhAI est publiée dans Science Formation avec des millions de données cristallines pour résoudre le problème de la phase cristallographique, la méthode d'apprentissage profond PhAI est publiée dans Science Aug 08, 2024 pm 09:22 PM

Editeur | KX À ce jour, les détails structurels et la précision déterminés par cristallographie, des métaux simples aux grandes protéines membranaires, sont inégalés par aucune autre méthode. Cependant, le plus grand défi, appelé problème de phase, reste la récupération des informations de phase à partir d'amplitudes déterminées expérimentalement. Des chercheurs de l'Université de Copenhague au Danemark ont ​​développé une méthode d'apprentissage en profondeur appelée PhAI pour résoudre les problèmes de phase cristalline. Un réseau neuronal d'apprentissage en profondeur formé à l'aide de millions de structures cristallines artificielles et de leurs données de diffraction synthétique correspondantes peut générer des cartes précises de densité électronique. L'étude montre que cette méthode de solution structurelle ab initio basée sur l'apprentissage profond peut résoudre le problème de phase avec une résolution de seulement 2 Angströms, ce qui équivaut à seulement 10 à 20 % des données disponibles à la résolution atomique, alors que le calcul ab initio traditionnel

Google AI a remporté la médaille d'argent de l'Olympiade mathématique de l'OMI, le modèle de raisonnement mathématique AlphaProof a été lancé et l'apprentissage par renforcement est de retour. Google AI a remporté la médaille d'argent de l'Olympiade mathématique de l'OMI, le modèle de raisonnement mathématique AlphaProof a été lancé et l'apprentissage par renforcement est de retour. Jul 26, 2024 pm 02:40 PM

Pour l’IA, l’Olympiade mathématique n’est plus un problème. Jeudi, l'intelligence artificielle de Google DeepMind a réalisé un exploit : utiliser l'IA pour résoudre la vraie question de l'Olympiade mathématique internationale de cette année, l'OMI, et elle n'était qu'à un pas de remporter la médaille d'or. Le concours de l'OMI qui vient de se terminer la semaine dernière comportait six questions portant sur l'algèbre, la combinatoire, la géométrie et la théorie des nombres. Le système d'IA hybride proposé par Google a répondu correctement à quatre questions et a marqué 28 points, atteignant le niveau de la médaille d'argent. Plus tôt ce mois-ci, le professeur titulaire de l'UCLA, Terence Tao, venait de promouvoir l'Olympiade mathématique de l'IA (AIMO Progress Award) avec un prix d'un million de dollars. De manière inattendue, le niveau de résolution de problèmes d'IA s'était amélioré à ce niveau avant juillet. Posez les questions simultanément sur l'OMI. La chose la plus difficile à faire correctement est l'OMI, qui a la plus longue histoire, la plus grande échelle et la plus négative.

PRO | Pourquoi les grands modèles basés sur le MoE méritent-ils davantage d'attention ? PRO | Pourquoi les grands modèles basés sur le MoE méritent-ils davantage d'attention ? Aug 07, 2024 pm 07:08 PM

En 2023, presque tous les domaines de l’IA évoluent à une vitesse sans précédent. Dans le même temps, l’IA repousse constamment les limites technologiques de domaines clés tels que l’intelligence embarquée et la conduite autonome. Sous la tendance multimodale, le statut de Transformer en tant qu'architecture dominante des grands modèles d'IA sera-t-il ébranlé ? Pourquoi l'exploration de grands modèles basés sur l'architecture MoE (Mixture of Experts) est-elle devenue une nouvelle tendance dans l'industrie ? Les modèles de grande vision (LVM) peuvent-ils constituer une nouvelle avancée dans la vision générale ? ...Dans la newsletter des membres PRO 2023 de ce site publiée au cours des six derniers mois, nous avons sélectionné 10 interprétations spéciales qui fournissent une analyse approfondie des tendances technologiques et des changements industriels dans les domaines ci-dessus pour vous aider à atteindre vos objectifs dans le nouveau année. Cette interprétation provient de la Week50 2023

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

Le taux de précision atteint 60,8 %. Le modèle de prédiction de rétrosynthèse chimique de l'Université du Zhejiang basé sur Transformer a été publié dans la sous-journal Nature. Le taux de précision atteint 60,8 %. Le modèle de prédiction de rétrosynthèse chimique de l'Université du Zhejiang basé sur Transformer a été publié dans la sous-journal Nature. Aug 06, 2024 pm 07:34 PM

Editeur | KX La rétrosynthèse est une tâche essentielle dans la découverte de médicaments et la synthèse organique, et l'IA est de plus en plus utilisée pour accélérer le processus. Les méthodes d’IA existantes ont des performances insatisfaisantes et une diversité limitée. En pratique, les réactions chimiques provoquent souvent des modifications moléculaires locales, avec un chevauchement considérable entre les réactifs et les produits. Inspirée par cela, l'équipe de Hou Tingjun de l'Université du Zhejiang a proposé de redéfinir la prédiction rétrosynthétique en une seule étape en tant que tâche d'édition de chaînes moléculaires, en affinant de manière itérative la chaîne moléculaire cible pour générer des composés précurseurs. Et un modèle rétrosynthétique basé sur l'édition, EditRetro, est proposé, qui permet d'obtenir des prédictions diverses et de haute qualité. Des expériences approfondies montrent que le modèle atteint d'excellentes performances sur l'ensemble de données de référence standard USPTO-50 K, avec une précision top 1 de 60,8 %.

Le point de vue de la nature : les tests de l'intelligence artificielle en médecine sont dans le chaos. Que faut-il faire ? Le point de vue de la nature : les tests de l'intelligence artificielle en médecine sont dans le chaos. Que faut-il faire ? Aug 22, 2024 pm 04:37 PM

Editeur | ScienceAI Sur la base de données cliniques limitées, des centaines d'algorithmes médicaux ont été approuvés. Les scientifiques se demandent qui devrait tester les outils et comment le faire au mieux. Devin Singh a vu un patient pédiatrique aux urgences subir un arrêt cardiaque alors qu'il attendait un traitement pendant une longue période, ce qui l'a incité à explorer l'application de l'IA pour réduire les temps d'attente. À l’aide des données de triage des salles d’urgence de SickKids, Singh et ses collègues ont construit une série de modèles d’IA pour fournir des diagnostics potentiels et recommander des tests. Une étude a montré que ces modèles peuvent accélérer les visites chez le médecin de 22,3 %, accélérant ainsi le traitement des résultats de près de 3 heures par patient nécessitant un examen médical. Cependant, le succès des algorithmes d’intelligence artificielle dans la recherche ne fait que le vérifier.

See all articles