


Sous-journal Nature, meilleur qu'AlphaFold, échantillonnage de tous les atomes, une méthode d'IA pour prédire la structure des peptides
Les méthodes d'apprentissage en profondeur ont favorisé des progrès significatifs dans la prédiction à un état unique des structures biomoléculaires. Cependant, la fonctionnalité des biomolécules dépend de la gamme de conformations qu’elles peuvent prendre. Cela est particulièrement vrai pour les peptides, une classe de molécules très flexibles qui participent à divers processus biologiques et présentent un grand intérêt en termes thérapeutiques.
Philip M. Kim et Osama Abdin de l'Université de Toronto ont développé PepFlow, un modèle génératif transférable qui permet l'échantillonnage de tous les atomes directement à partir de l'espace conformationnel autorisé d'un peptide d'entrée. Les chercheurs ont formé le modèle dans un cadre de diffusion, puis ont utilisé un flux équivalent pour l'échantillonnage conformationnel.
Pour surmonter le coût prohibitif de la modélisation généralisée de tous les atomes, ils ont modularisé le processus de génération et intégré des super-réseaux pour prédire les paramètres de réseau spécifiques à une séquence. PepFlow prédit avec précision les structures peptidiques et reproduit efficacement les collections expérimentales de peptides en une fraction du temps d'exécution des méthodes traditionnelles. PepFlow peut également être utilisé pour échantillonner des conformations qui satisfont à des contraintes telles que la macrocyclisation.
"Jusqu'à présent, nous n'avons pas été en mesure de simuler la conformation complète d'un peptide." Osama Abdin, le premier auteur de l'étude, a déclaré : "PepFlow utilise l'apprentissage en profondeur pour capturer la conformation précise du peptide en quelques minutes. "Le modèle a le potentiel d'être utilisé par la conception des peptides comme liants pour guider le développement de médicaments"
L'étude était intitulée "Échantillonnage conformationnel direct à partir de paysages énergétiques peptidiques à travers une diffusion conditionnée par hyperréseau" et a été publiée dans "Nature Machine Intelligence" le 27 juin 2024.
- Les interactions protéine-peptide sont répandues dans les voies moléculaires et sont essentielles à la fonction cellulaire.
- Jusqu'à 40 % des interactions protéine-protéine impliquent la liaison peptidique.
- Les peptides agissent en liant de courtes séquences de protéines globulaires à des régions désordonnées.
Potentiel thérapeutique des peptides
- Les peptides ont une spécificité élevée et un faible risque de toxicité.
- Par rapport aux agents biologiques, les peptides ont de faibles coûts de production et une faible immunogénicité.
- La thérapie peptidique continue d’étendre sa part sur le marché pharmaceutique.
Modélisation et ingénierie des peptides
- Philip M. Kim a déclaré que le modèle PepFlow se concentre sur les peptides car ce sont des biomolécules importantes avec des activités naturelles et leurs conformations doivent être simulées pour comprendre leur fonction.
- Philip M. Kim et Osama Abdin proposent une méthode d'échantillonnage direct de tous les atomes des conformations peptidiques.
- Un échantillonnage précis et efficace de tous les atomes est extrêmement difficile, même pour les peptides courts.
Illustration : Schéma de principe de l'architecture PepFlow. (Source : article)
Pour résoudre ce problème, ils ont développé PepFlow, un modèle génératif conditionnel modulaire en hyperréseau qui peut prédire les conformations de tous les atomes pour n'importe quelle séquence peptidique d'entrée. PepFlow est un modèle de diffusion en temps continu formé sur des conformations moléculaires connues. L'ODE de flux probabiliste correspondant est utilisé pour l'échantillonnage et la formation d'énergie.
PepFlow possède de puissantes capacités pour prédire les structures peptidiques singules et les collections de motifs linéaires courts (SLiM), et peut modéliser les structures peptidiques sous des contraintes telles que la macrocyclisation grâce à des recherches conformationnelles dans l'espace latent.
Ce modèle étend la capacité d'AlphaFold, le principal système d'IA de Google Deepmind, à prédire les structures des protéines. PepFlow surpasse AlphaFold2 en générant une gamme de conformations pour un peptide donné ; AlphaFold2 n'a pas été conçu pour résoudre ce problème ;
Ce qui distingue PepFlow, c'est l'innovation technologique qui se cache derrière. Par exemple, il s’agit d’un modèle généralisé inspiré du générateur Boltzmann, un modèle d’apprentissage automatique très avancé basé sur la physique.
« L'utilisation de la modélisation PepFlow peut donner un aperçu du véritable statut énergétique des peptides. » Abdin a déclaré : « Il a fallu deux ans et demi pour développer PepFlow et seulement un mois pour le former, mais cela vaut la peine de passer à la prochaine frontière et au-delà. Des modèles qui prédisent une seule structure d’un peptide. Dans l’ensemble, la capacité d’échantillonner avec précision et efficacité les conformations des peptides a le potentiel d’améliorer l’amarrage et la conception des peptides. Les méthodes d’amarrage peptidique commencent généralement par une bibliothèque de conformations peptidiques ancrées à la protéine d’intérêt. Une génération plus précise d’ensembles peptidiques pourrait améliorer ce processus.
PepFlow peut également être utilisé pour évaluer la propension de différentes séquences à adopter des conformations aux interfaces protéine-protéine cibles, qui peuvent à leur tour être utilisées pour concevoir des peptides inhibiteurs.
Illustration : Comparaison des ensembles générés par PepFlow et simulations de dynamique moléculaire. (Source : article)
PepFlow présente un inconvénient important : contrairement au générateur Boltzmann, PepFlow n'a pas la capacité de repondérer les échantillons générés pour obtenir une distribution Boltzmann précise.
Bien que PepFlow soit capable d'effectuer des calculs de vraisemblance sur des échantillons générés, les calculs réalisables nécessitent l'utilisation d'estimateurs stochastiques, qui ajoutent du bruit aux valeurs calculées. De plus, PepFlow génère occasionnellement des échantillons à haute énergie, mais est incapable de capturer l’intégralité du paysage énergétique observé dans les simulations de dynamique moléculaire.
Un moyen potentiel d'améliorer PepFlow consiste à transférer le modèle développé vers d'autres cadres d'échantillonnage. Un flux normalisé a été utilisé dans les paramètres conditionnels et différentes méthodes d'échantillonnage ont été utilisées pour faciliter l'échantillonnage à partir de la distribution de Boltzmann.
Le paradigme d'appariement de flux récemment développé par la communauté universitaire sert en outre d'alternative à la formation de modèles de flux normalisés continus sans simulation. L'appariement de flux a été utilisé efficacement pour l'échantillonnage structurel de différentes molécules, y compris de petites molécules et de protéines, et peut potentiellement être utilisé pour étendre l'efficacité du cadre PepFlow.
En résumé, PepFlow est conçu pour être facilement extensible pour tenir compte d'autres facteurs, de nouvelles informations et d'utilisations potentielles.
Même dans sa première version, PepFlow est un modèle complet et efficace avec un potentiel de développement ultérieur de thérapies reposant sur la liaison peptidique pour activer ou inhiber des processus biologiques.
Lien papier : https://www.nature.com/articles/s42256-024-00860-4
Rapports associés : https://phys.org/news/2024-06-deep-outperforms-google-ai -peptide.html
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Mais peut-être qu’il ne pourra pas vaincre le vieil homme dans le parc ? Les Jeux Olympiques de Paris battent leur plein et le tennis de table suscite beaucoup d'intérêt. Dans le même temps, les robots ont également réalisé de nouvelles avancées dans le domaine du tennis de table. DeepMind vient tout juste de proposer le premier agent robot apprenant capable d'atteindre le niveau des joueurs amateurs humains de tennis de table de compétition. Adresse papier : https://arxiv.org/pdf/2408.03906 Quelle est la capacité du robot DeepMind à jouer au tennis de table ? Probablement à égalité avec les joueurs amateurs humains : tant en coup droit qu'en revers : l'adversaire utilise une variété de styles de jeu, et le robot peut également résister : recevoir des services avec des tours différents : Cependant, l'intensité du jeu ne semble pas aussi intense que le vieil homme dans le parc. Pour les robots, le tennis de table

Le 21 août, la Conférence mondiale sur les robots 2024 s'est tenue en grande pompe à Pékin. La marque de robots domestiques de SenseTime, "Yuanluobot SenseRobot", a dévoilé toute sa famille de produits et a récemment lancé le robot de jeu d'échecs Yuanluobot AI - Chess Professional Edition (ci-après dénommé "Yuanluobot SenseRobot"), devenant ainsi le premier robot d'échecs au monde pour le maison. En tant que troisième produit robot jouant aux échecs de Yuanluobo, le nouveau robot Guoxiang a subi un grand nombre de mises à niveau techniques spéciales et d'innovations en matière d'IA et de machines d'ingénierie. Pour la première fois, il a réalisé la capacité de ramasser des pièces d'échecs en trois dimensions. grâce à des griffes mécaniques sur un robot domestique et effectuer des fonctions homme-machine telles que jouer aux échecs, tout le monde joue aux échecs, réviser la notation, etc.

La rentrée scolaire est sur le point de commencer, et ce ne sont pas seulement les étudiants qui sont sur le point de commencer le nouveau semestre qui doivent prendre soin d’eux-mêmes, mais aussi les grands modèles d’IA. Il y a quelque temps, Reddit était rempli d'internautes se plaignant de la paresse de Claude. « Son niveau a beaucoup baissé, il fait souvent des pauses et même la sortie devient très courte. Au cours de la première semaine de sortie, il pouvait traduire un document complet de 4 pages à la fois, mais maintenant il ne peut même plus produire une demi-page. !" https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ dans un post intitulé "Totalement déçu par Claude", plein de

Lors de la World Robot Conference qui se tient à Pékin, l'exposition de robots humanoïdes est devenue le centre absolu de la scène. Sur le stand Stardust Intelligent, l'assistant robot IA S1 a réalisé trois performances majeures de dulcimer, d'arts martiaux et de calligraphie. un espace d'exposition, capable à la fois d'arts littéraires et martiaux, a attiré un grand nombre de publics professionnels et de médias. Le jeu élégant sur les cordes élastiques permet au S1 de démontrer un fonctionnement fin et un contrôle absolu avec vitesse, force et précision. CCTV News a réalisé un reportage spécial sur l'apprentissage par imitation et le contrôle intelligent derrière "Calligraphy". Le fondateur de la société, Lai Jie, a expliqué que derrière les mouvements soyeux, le côté matériel recherche le meilleur contrôle de la force et les indicateurs corporels les plus humains (vitesse, charge). etc.), mais du côté de l'IA, les données réelles de mouvement des personnes sont collectées, permettant au robot de devenir plus fort lorsqu'il rencontre une situation forte et d'apprendre à évoluer rapidement. Et agile

Les contributeurs ont beaucoup gagné de cette conférence ACL. L'ACL2024, d'une durée de six jours, se tient à Bangkok, en Thaïlande. ACL est la plus grande conférence internationale dans le domaine de la linguistique informatique et du traitement du langage naturel. Elle est organisée par l'Association internationale pour la linguistique informatique et a lieu chaque année. L'ACL s'est toujours classée première en termes d'influence académique dans le domaine de la PNL, et c'est également une conférence recommandée par le CCF-A. La conférence ACL de cette année est la 62e et a reçu plus de 400 travaux de pointe dans le domaine de la PNL. Hier après-midi, la conférence a annoncé le meilleur article et d'autres récompenses. Cette fois, il y a 7 Best Paper Awards (deux inédits), 1 Best Theme Paper Award et 35 Outstanding Paper Awards. La conférence a également décerné 3 Resource Paper Awards (ResourceAward) et Social Impact Award (

Intégration profonde de la vision et de l'apprentissage des robots. Lorsque deux mains de robot travaillent ensemble en douceur pour plier des vêtements, verser du thé et emballer des chaussures, associées au robot humanoïde 1X NEO qui a fait la une des journaux récemment, vous pouvez avoir le sentiment : nous semblons entrer dans l'ère des robots. En fait, ces mouvements soyeux sont le produit d’une technologie robotique avancée + d’une conception de cadre exquise + de grands modèles multimodaux. Nous savons que les robots utiles nécessitent souvent des interactions complexes et exquises avec l’environnement, et que l’environnement peut être représenté comme des contraintes dans les domaines spatial et temporel. Par exemple, si vous souhaitez qu'un robot verse du thé, le robot doit d'abord saisir la poignée de la théière et la maintenir verticalement sans renverser le thé, puis la déplacer doucement jusqu'à ce que l'embouchure de la théière soit alignée avec l'embouchure de la tasse. , puis inclinez la théière selon un certain angle. ce

Introduction à la conférence Avec le développement rapide de la science et de la technologie, l'intelligence artificielle est devenue une force importante dans la promotion du progrès social. À notre époque, nous avons la chance d’être témoins et de participer à l’innovation et à l’application de l’intelligence artificielle distribuée (DAI). L’intelligence artificielle distribuée est une branche importante du domaine de l’intelligence artificielle, qui a attiré de plus en plus d’attention ces dernières années. Les agents basés sur de grands modèles de langage (LLM) ont soudainement émergé. En combinant les puissantes capacités de compréhension du langage et de génération des grands modèles, ils ont montré un grand potentiel en matière d'interaction en langage naturel, de raisonnement par connaissances, de planification de tâches, etc. AIAgent reprend le grand modèle de langage et est devenu un sujet brûlant dans le cercle actuel de l'IA. Au

Cet après-midi, Hongmeng Zhixing a officiellement accueilli de nouvelles marques et de nouvelles voitures. Le 6 août, Huawei a organisé la conférence de lancement de nouveaux produits Hongmeng Smart Xingxing S9 et Huawei, réunissant la berline phare intelligente panoramique Xiangjie S9, le nouveau M7Pro et Huawei novaFlip, MatePad Pro 12,2 pouces, le nouveau MatePad Air, Huawei Bisheng With de nombreux nouveaux produits intelligents tous scénarios, notamment la série d'imprimantes laser X1, FreeBuds6i, WATCHFIT3 et l'écran intelligent S5Pro, des voyages intelligents, du bureau intelligent aux vêtements intelligents, Huawei continue de construire un écosystème intelligent complet pour offrir aux consommateurs une expérience intelligente du Internet de tout. Hongmeng Zhixing : Autonomisation approfondie pour promouvoir la modernisation de l'industrie automobile intelligente Huawei s'associe à ses partenaires de l'industrie automobile chinoise pour fournir
