Étant donné un tableau 'ARR', divisez-le en deux sous-ensembles (éventuellement vides) de telle sorte que leur union soit le tableau d'origine. Soit la somme des éléments de ces deux sous-ensembles « S1 » et « S2 ».
Étant donné une différence « D », comptez le nombre de partitions dans lesquelles « S1 » est supérieur ou égal à « S2 » et la différence entre « S1 » et « S2 » est égale à « D ». Puisque la réponse est peut-être trop grande, renvoyez-la modulo « 10^9 + 7 ».
Si « Pi_Sj » désigne le sous-ensemble « j » pour la partition « i ». Alors, deux partitions P1 et P2 sont considérées différentes si :
Constraints : 1 ≤ T ≤ 10 1 ≤ N ≤ 50 0 ≤ D ≤ 2500 0 ≤ ARR[i] ≤ 50
Solution récursive :
Cela mènera à TLE car ce n'est pas optimal
import java.util.*; public class Solution { static int mod = (int)(1e9+7); public static int countPartitions(int n, int d, int[] arr) { // Write your code here. /* given : 1. s1 + s2 = sum; where sum is sum of all the elements in the array 2. s1-s2 = D for s1>s2; modifications: since s1+s2 = sum;hence s1 = sum-s2; from 2, sum-s2-s2 = D; ie s2 = (sum-D)/2 = target; so we have to find all the subsets that are equal to target :) edge cases to avoid : 1. (sum-D)/2 can't be fraction value hence (sum-D) should be even 2. (sum-D)>=0 since it can't be nagative as sum of all the elements of the array can't be negative */ int target =0; for(int i : arr) target+=i; //implementing edge case first if(target-d<0 || (target-d)%2!=0) return 0; return findSubsetSumCountEqualsToTarget(arr,n-1,(target-d)/2); } public static int findSubsetSumCountEqualsToTarget(int [] arr, int i, int target){ if(i==0){ //since 0<=arr[i]<=50; hence we have to check the possibility of 0 as well // if arr[i]==0 and target =0 then you should return 2 //as there are two solutions now ie either you will take this 0 or won't take this 0 //in either case of taking or not taking of 0 target will remain 0 only, as 0 won't alter target value hence there will be 2 possible solutions if(target ==0 && arr[i]==0) return 2; // extra line added to the usual appraoch because of presence of 0 in the array if(target==0 || arr[i]==target) return 1; // usual approach return 0; } int left =0; if(target>=arr[i]){ left = findSubsetSumCountEqualsToTarget(arr,i-1,target-arr[i]); } int right = findSubsetSumCountEqualsToTarget(arr,i-1,target); return (left+right)%mod; }
Solution de mémorisation Dp :
//create dp array in the driver class , and add dp to the function call int dp[][] = new int[n][(target-d)/2 +1] ; for(int row[]: dp) Arrays.fill(row,-1);
public static int findSubsetSumCountEqualsToTarget(int [] arr, int i, int target,int dp[][]){ if(i==0){ //since 0<=arr[i]<=50; hence we have to check the possibility of 0 as well // if arr[i]==0 and target =0 then you should return 2 //as there are two solutions now ie either you will take this 0 or won't take this 0 //in either case of taking or not taking of 0 target will remain 0 only, as 0 won't alter target value hence there will be 2 possible solutions if(target ==0 && arr[i]==0) return 2; // extra line added to the usual appraoch because of presence of 0 in the array if(target==0 || arr[i]==target) return 1; // usual approach return 0; } if(dp[i][target]!=-1) return dp[i][target]; int left =0; if(target>=arr[i]){ left = findSubsetSumCountEqualsToTarget(arr,i-1,target-arr[i],dp); } int right = findSubsetSumCountEqualsToTarget(arr,i-1,target,dp); return dp[i][target] = (left+right)%mod; } }
Tabulation :
import java.util.*; public class Solution { static int mod = (int)(1e9+7); public static int countPartitions(int n, int d, int[] arr) { // Write your code here. /* given : 1. s1 + s2 = sum; where sum is sum of all the elements in the array 2. s1-s2 = D for s1>s2; modifications: since s1+s2 = sum;hence s1 = sum-s2; from 2, sum-s2-s2 = D; ie s2 = (sum-D)/2 = target; so we have to find all the subsets that are equal to target :) edge cases to avoid : 1. (sum-D)/2 can't be fraction value hence (sum-D) should be even 2. (sum-D)>=0 since it can't be nagative as sum of all the elements of the array can't be negative */ int target =0; for(int i : arr) target+=i; //implementing edge case first if(target-d<0 || (target-d)%2!=0) return 0; return findSolByTabulation(arr,n,(target-d)/2); } public static int findSolByTabulation(int [] arr, int n, int target){ int dp[][] = new int[n][target +1] ; for(int row[]: dp) Arrays.fill(row,-1); if(arr[0] ==0) dp[0][0] = 2; else dp[0][0] = 1; if(arr[0]!=0 && arr[0]<=target) dp[0][arr[0]]=1; for(int i =1;i<arr.length;i++){ for(int tar = 0;tar<=target;tar++){ int left =0; if(tar>=arr[i]){ left = dp[i-1][tar-arr[i]]; } int right = dp[i-1][tar]; dp[i][tar] = (left+right); } } return dp[n-1][target]; } }
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!