


MotionClone : Aucune formation requise, clonage en un clic des mouvements vidéo

La rubrique AIxiv est une rubrique où ce site publie du contenu académique et technique. Au cours des dernières années, la rubrique AIxiv de ce site a reçu plus de 2 000 rapports, couvrant les meilleurs laboratoires des principales universités et entreprises du monde entier, favorisant efficacement les échanges et la diffusion académiques. Si vous souhaitez partager un excellent travail, n'hésitez pas à contribuer ou à nous contacter pour un rapport. Courriel de soumission : liyazhou@jiqizhixin.com ; zhaoyunfeng@jiqizhixin.com
Aucune formation ou réglage n'est requis. Clonez le mouvement de la vidéo de référence dans la nouvelle scène spécifiée par le mot d'invite, qu'il s'agisse d'un mouvement global de la caméra. ou un mouvement corporel local. Un clic pour le faire.
Papier : https://arxiv.org/abs/2406.05338
Page d'accueil : https://bujiazi.github.io/motionclone.github.io/
Code : https:// github.com/Bujiazi/MotionClone
Cet article propose un nouveau framework appelé MotionClone. Étant donné n'importe quelle vidéo de référence, les informations de mouvement correspondantes peuvent être extraites sans formation de modèle ni réglage fin, ces informations de mouvement peuvent directement guider la génération de nouvelles ; des vidéos accompagnées d'invites textuelles pour réaliser des vidéos générées par du texte avec un mouvement personnalisé (text2video).
Par rapport aux recherches précédentes, MotionClone présente les avantages suivants :
Aucune formation ou réglage précis n'est requis : les méthodes précédentes nécessitent généralement d'entraîner des modèles pour encoder les signaux de mouvement ou d'affiner les modèles de diffusion vidéo pour s'adapter à des modèles de mouvement spécifiques. . Les modèles d'entraînement pour coder les signaux de mouvement ont une faible capacité de généralisation pour se déplacer en dehors du domaine d'entraînement, et le réglage fin des modèles de génération vidéo existants peut endommager la qualité de génération vidéo sous-jacente du modèle de base. MotionClone ne nécessite l'introduction d'aucune formation supplémentaire ou réglage fin, améliorant les capacités de généralisation du mouvement tout en conservant au maximum la qualité de génération du modèle de base.
Qualité de mouvement supérieure : il est difficile pour les modèles vidéo Wensheng open source existants de générer des mouvements importants et raisonnables. MotionClone introduit le guidage de mouvement d'attention de synchronisation des composants principaux pour améliorer considérablement l'amplitude de mouvement de la vidéo générée tout en garantissant efficacement la rationalité du mouvement.
Meilleure relation de position spatiale : afin d'éviter l'inadéquation sémantique spatiale qui peut être causée par le clonage de mouvement direct, MotionClone propose un guidage d'informations sémantiques spatiales basé sur des masques d'attention croisée pour aider à obtenir des informations sémantiques spatiales et des informations de mouvement spatio-temporelles correctes. .couplage.
Informations sur le mouvement dans le module d'attention temporelle
Dans le travail vidéo généré par du texte, le module d'attention temporelle (Temporal Attention) est largement utilisé pour modéliser la corrélation inter-images des vidéos. Étant donné que le score d'attention (attention map score) dans le module d'attention temporelle caractérise la corrélation entre les images, une idée intuitive est de savoir si les connexions inter-images peuvent être répliquées en contraignant les scores d'attention à être complètement cohérents pour réaliser le clonage de mouvement.
Cependant, des expériences ont montré que la copie directe de la carte d'attention complète (contrôle simple) ne peut obtenir qu'un transfert de mouvement très approximatif, car la plupart des poids de l'attention correspondent à du bruit ou à des informations de mouvement très subtiles, difficiles à combiner. En revanche, avec de nouveaux scénarios spécifiés dans le texte, cela obscurcit un guidage de mouvement potentiellement efficace.
Afin de résoudre ce problème, MotionClone introduit le mécanisme de guidage de l'attention temporelle des composants principaux (Guidage de l'attention temporelle primaire), qui utilise uniquement les composants principaux de l'attention temporelle pour guider de manière éparse la génération vidéo, filtrant ainsi le bruit et les mouvements subtils. Le négatif L’impact de l’information permet un clonage efficace du mouvement dans de nouveaux scénarios spécifiés par le texte.
Correction sémantique spatiale
Le guidage de mouvement d'attention temporelle du composant principal peut réaliser le clonage de mouvement de la vidéo de référence, mais il ne peut pas garantir que le sujet en mouvement est cohérent avec l'intention de l'utilisateur, ce qui réduira la qualité de la génération vidéo. Dans certains cas, cela peut même conduire à la luxation du sujet en mouvement.
Afin de résoudre les problèmes ci-dessus, MotionClone introduit un mécanisme de guidage sémantique spatial (guidage sémantique basé sur la localisation), divise les zones d'arrière-plan avant et arrière de la vidéo via un masque d'attention croisée, et le garantit en limitant respectivement les informations sémantiques. de l'arrière-plan avant et arrière de la vidéo. La disposition rationnelle de la sémantique spatiale favorise le couplage correct du mouvement temporel et de la sémantique spatiale.
Détails de mise en œuvre de MotionClone
Inversion DDIM : MotionClone utilise l'inversion DDIM pour inverser la vidéo de référence d'entrée dans l'espace latent afin de mettre en œuvre l'extraction des composants principaux de l'attention temporelle de la vidéo de référence.
Étape de guidage : au cours de chaque débruitage, MotionClone introduit simultanément le guidage de mouvement d'attention temporel des composants principaux et le guidage d'informations sémantiques spatiales, qui fonctionnent ensemble pour fournir un guidage complet de mouvement et sémantique pour la génération vidéo contrôlable.
Masque gaussien : Dans le mécanisme de guidage sémantique spatial, la fonction du noyau gaussien est utilisée pour brouiller le masque d'attention croisée afin d'éliminer l'influence des informations structurelles potentielles.
30 vidéos de l'ensemble de données DAVIS ont été utilisées pour les tests. Les résultats expérimentaux montrent que MotionClone a obtenu des améliorations significatives en termes d'ajustement du texte, de cohérence temporelle et d'indicateurs d'enquête auprès de plusieurs utilisateurs, surpassant les méthodes de transfert de mouvement précédentes. Les résultats spécifiques sont présentés dans le tableau ci-dessous.
La comparaison des résultats de génération de MotionClone et des méthodes de migration de mouvement existantes est présentée dans la figure ci-dessous. On peut voir que MotionClone a des performances de pointe.
Pour résumer, MotionClone est un nouveau cadre de transfert de mouvement qui peut cloner efficacement le mouvement d'une vidéo de référence vers une nouvelle scène spécifiée par un mot d'invite donné par l'utilisateur sans formation ni réglage fin. Fournit un plug-and-play. solutions de personnalisation de mouvement pour les modèles vidéo Vincent existants.
MotionClone introduit un guidage efficace des informations de mouvement des composants principaux et un guidage sémantique spatial sur la base du maintien de la qualité de génération du modèle de base existant, ce qui améliore considérablement la cohérence du mouvement avec la vidéo de référence tout en garantissant la capacité d'alignement sémantique avec le texte. obtenir une génération vidéo de haute qualité et contrôlable.
De plus, MotionClone peut s'adapter directement à des modèles de communauté riches pour réaliser une génération vidéo diversifiée et possède une évolutivité extrêmement élevée.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Mais peut-être qu’il ne pourra pas vaincre le vieil homme dans le parc ? Les Jeux Olympiques de Paris battent leur plein et le tennis de table suscite beaucoup d'intérêt. Dans le même temps, les robots ont également réalisé de nouvelles avancées dans le domaine du tennis de table. DeepMind vient tout juste de proposer le premier agent robot apprenant capable d'atteindre le niveau des joueurs amateurs humains de tennis de table de compétition. Adresse papier : https://arxiv.org/pdf/2408.03906 Quelle est la capacité du robot DeepMind à jouer au tennis de table ? Probablement à égalité avec les joueurs amateurs humains : tant en coup droit qu'en revers : l'adversaire utilise une variété de styles de jeu, et le robot peut également résister : recevoir des services avec des tours différents : Cependant, l'intensité du jeu ne semble pas aussi intense que le vieil homme dans le parc. Pour les robots, le tennis de table

Le 21 août, la Conférence mondiale sur les robots 2024 s'est tenue en grande pompe à Pékin. La marque de robots domestiques de SenseTime, "Yuanluobot SenseRobot", a dévoilé toute sa famille de produits et a récemment lancé le robot de jeu d'échecs Yuanluobot AI - Chess Professional Edition (ci-après dénommé "Yuanluobot SenseRobot"), devenant ainsi le premier robot d'échecs au monde pour le maison. En tant que troisième produit robot jouant aux échecs de Yuanluobo, le nouveau robot Guoxiang a subi un grand nombre de mises à niveau techniques spéciales et d'innovations en matière d'IA et de machines d'ingénierie. Pour la première fois, il a réalisé la capacité de ramasser des pièces d'échecs en trois dimensions. grâce à des griffes mécaniques sur un robot domestique et effectuer des fonctions homme-machine telles que jouer aux échecs, tout le monde joue aux échecs, réviser la notation, etc.

La rentrée scolaire est sur le point de commencer, et ce ne sont pas seulement les étudiants qui sont sur le point de commencer le nouveau semestre qui doivent prendre soin d’eux-mêmes, mais aussi les grands modèles d’IA. Il y a quelque temps, Reddit était rempli d'internautes se plaignant de la paresse de Claude. « Son niveau a beaucoup baissé, il fait souvent des pauses et même la sortie devient très courte. Au cours de la première semaine de sortie, il pouvait traduire un document complet de 4 pages à la fois, mais maintenant il ne peut même plus produire une demi-page. !" https://www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ dans un post intitulé "Totalement déçu par Claude", plein de

Lors de la World Robot Conference qui se tient à Pékin, l'exposition de robots humanoïdes est devenue le centre absolu de la scène. Sur le stand Stardust Intelligent, l'assistant robot IA S1 a réalisé trois performances majeures de dulcimer, d'arts martiaux et de calligraphie. un espace d'exposition, capable à la fois d'arts littéraires et martiaux, a attiré un grand nombre de publics professionnels et de médias. Le jeu élégant sur les cordes élastiques permet au S1 de démontrer un fonctionnement fin et un contrôle absolu avec vitesse, force et précision. CCTV News a réalisé un reportage spécial sur l'apprentissage par imitation et le contrôle intelligent derrière "Calligraphy". Le fondateur de la société, Lai Jie, a expliqué que derrière les mouvements soyeux, le côté matériel recherche le meilleur contrôle de la force et les indicateurs corporels les plus humains (vitesse, charge). etc.), mais du côté de l'IA, les données réelles de mouvement des personnes sont collectées, permettant au robot de devenir plus fort lorsqu'il rencontre une situation forte et d'apprendre à évoluer rapidement. Et agile

Les contributeurs ont beaucoup gagné de cette conférence ACL. L'ACL2024, d'une durée de six jours, se tient à Bangkok, en Thaïlande. ACL est la plus grande conférence internationale dans le domaine de la linguistique informatique et du traitement du langage naturel. Elle est organisée par l'Association internationale pour la linguistique informatique et a lieu chaque année. L'ACL s'est toujours classée première en termes d'influence académique dans le domaine de la PNL, et c'est également une conférence recommandée par le CCF-A. La conférence ACL de cette année est la 62e et a reçu plus de 400 travaux de pointe dans le domaine de la PNL. Hier après-midi, la conférence a annoncé le meilleur article et d'autres récompenses. Cette fois, il y a 7 Best Paper Awards (deux inédits), 1 Best Theme Paper Award et 35 Outstanding Paper Awards. La conférence a également décerné 3 Resource Paper Awards (ResourceAward) et Social Impact Award (

Intégration profonde de la vision et de l'apprentissage des robots. Lorsque deux mains de robot travaillent ensemble en douceur pour plier des vêtements, verser du thé et emballer des chaussures, associées au robot humanoïde 1X NEO qui a fait la une des journaux récemment, vous pouvez avoir le sentiment : nous semblons entrer dans l'ère des robots. En fait, ces mouvements soyeux sont le produit d’une technologie robotique avancée + d’une conception de cadre exquise + de grands modèles multimodaux. Nous savons que les robots utiles nécessitent souvent des interactions complexes et exquises avec l’environnement, et que l’environnement peut être représenté comme des contraintes dans les domaines spatial et temporel. Par exemple, si vous souhaitez qu'un robot verse du thé, le robot doit d'abord saisir la poignée de la théière et la maintenir verticalement sans renverser le thé, puis la déplacer doucement jusqu'à ce que l'embouchure de la théière soit alignée avec l'embouchure de la tasse. , puis inclinez la théière selon un certain angle. ce

Introduction à la conférence Avec le développement rapide de la science et de la technologie, l'intelligence artificielle est devenue une force importante dans la promotion du progrès social. À notre époque, nous avons la chance d’être témoins et de participer à l’innovation et à l’application de l’intelligence artificielle distribuée (DAI). L’intelligence artificielle distribuée est une branche importante du domaine de l’intelligence artificielle, qui a attiré de plus en plus d’attention ces dernières années. Les agents basés sur de grands modèles de langage (LLM) ont soudainement émergé. En combinant les puissantes capacités de compréhension du langage et de génération des grands modèles, ils ont montré un grand potentiel en matière d'interaction en langage naturel, de raisonnement par connaissances, de planification de tâches, etc. AIAgent reprend le grand modèle de langage et est devenu un sujet brûlant dans le cercle actuel de l'IA. Au

Cet après-midi, Hongmeng Zhixing a officiellement accueilli de nouvelles marques et de nouvelles voitures. Le 6 août, Huawei a organisé la conférence de lancement de nouveaux produits Hongmeng Smart Xingxing S9 et Huawei, réunissant la berline phare intelligente panoramique Xiangjie S9, le nouveau M7Pro et Huawei novaFlip, MatePad Pro 12,2 pouces, le nouveau MatePad Air, Huawei Bisheng With de nombreux nouveaux produits intelligents tous scénarios, notamment la série d'imprimantes laser X1, FreeBuds6i, WATCHFIT3 et l'écran intelligent S5Pro, des voyages intelligents, du bureau intelligent aux vêtements intelligents, Huawei continue de construire un écosystème intelligent complet pour offrir aux consommateurs une expérience intelligente du Internet de tout. Hongmeng Zhixing : Autonomisation approfondie pour promouvoir la modernisation de l'industrie automobile intelligente Huawei s'associe à ses partenaires de l'industrie automobile chinoise pour fournir
