Maison Périphériques technologiques IA La performance est 11 fois supérieure, les équipes de Georgia Tech et Tsinghua ont utilisé l'IA pour aider à découvrir de nouveaux matériaux de stockage d'énergie, publié dans la sous-journal Nature.

La performance est 11 fois supérieure, les équipes de Georgia Tech et Tsinghua ont utilisé l'IA pour aider à découvrir de nouveaux matériaux de stockage d'énergie, publié dans la sous-journal Nature.

Jul 24, 2024 pm 05:42 PM
人工智能 理论 Université Qinghua La science des matériaux Systèmes électriques condensateur électrostatique

La performance est 11 fois supérieure, les équipes de Georgia Tech et Tsinghua ont utilisé lIA pour aider à découvrir de nouveaux matériaux de stockage dénergie, publié dans la sous-journal Nature.

编辑 | 萝卜皮

静电电容器是国防、航空、能源和交通领域先进电力系统中的关键储能元件。能量密度是静电电容器的品质因数,主要由介电材料的选择决定。

大多数工业级聚合物介电材料都是柔性聚烯烃或刚性芳族化合物,具有高能量密度或高热稳定性,但不能同时具有这两种特性。

在这里,佐治亚理工学院(Georgia Institute of Technology)、康涅狄格大学(University of Connecticut)以及清华大学的研究团队利用人工智能(AI)、聚合物化学和分子工程,来发现聚降冰片烯和聚酰亚胺系列中的一系列电介质。

许多发现的电介质在很宽的温度范围内表现出高热稳定性和高能量密度。其中一种电介质在 200 °C 时的能量密度为 8.3 J/cc,是此温度下任何市售聚合物电介质的 11 倍。

研究人员还评估了进一步增强聚降冰片烯和聚酰亚胺系列的途径,使这些电容器在要求苛刻的应用(例如航空航天)中表现良好,同时又具有环境可持续性。

这些发现扩展了静电电容器在 85-200°C 温度范围内的潜在应用;也展示了人工智能对化学结构生成和性质预测的影响,凸显了超越静电电容器的材料设计进步的潜力。

该研究以「AI-assisted discovery of high-temperature dielectrics for energy storage」为题,于 2024 年 7 月 19 日发布在《Nature Communications》。

La performance est 11 fois supérieure, les équipes de Georgia Tech et Tsinghua ont utilisé lIA pour aider à découvrir de nouveaux matériaux de stockage dénergie, publié dans la sous-journal Nature.

静电电容器需要新材料

静电电容器作为现代电气系统中的储能设备,有着至关重要的作用。与其他储能设备(如电池、燃料电池和超级电容器)相比,静电电容器提供了优异的功率密度(107 W/kg),在风力变桨控制(最高温度约 125 °C)、混合动力和全电动汽车(约 150 °C)、脉冲功率系统(约 180 °C)、飞机及发射器(约 300 °C)和太空探索(约 480 °C)等多个领域具有优势。

然而,显著提高静电电容器在高温下的能量密度 Ue 仍是挑战,这对于实现空间和重量的显著节省至关重要。

目前,双轴取向聚丙烯(BOPP)作为介电材料已使用三十余年。虽然 BOPP 具有低介电损耗和大电子带隙 Eg,但其介电常数和高温稳定性较差。

商业上已探索了具有高热稳定性的 BOPP 替代品,但这些聚合物通常以低 Eg 和低 Ue 为代价。这些材料不足以满足现代和未来技术的需求。

材料发现的挑战

聚合物的性能很大程度上取决于其化学成分。通过化学变换,单一聚合物可产生的变种数量惊人。

在所有聚合物的化学可能性中,可能存在许多高性能介电材料有待发现。训练有素并校准的人工智能(AI),能够处理超出人类想象的大量数据,可以快速帮助发现新材料。

有效发现材料涉及选择或生成化学子空间、估计其中每种材料的属性,然后至少部分地基于估计的属性选择候选材料进行合成和测试。

挑战在于:(1) 创建足够广阔的子空间来发现未知的新材料,同时 (2) 限制难以合成的假设材料(假阳性)。此外,性质估计必须 (3) 准确且 (4) 高效,随着化学子空间的扩大,后者变得越来越重要。

但是,同时解决所有这些问题并非易事。

新范式 polyVERSE

佐治亚理工学院、清华大学等机构的研究人员提出了 polyVERSE(polymers designed by Virtually-Executed Rule-Based Synthesis Experiments)范式,展示了其在高温电介质搜索背景下实现这四个属性的成功。

在人工智能驱动的方法中,使用专家系统从市售单体生成聚合物,并使用多任务图神经网络估计特性。这些特性估计可用于从较大的群体中选择(筛选)有前景的聚合物。

La performance est 11 fois supérieure, les équipes de Georgia Tech et Tsinghua ont utilisé lIA pour aider à découvrir de nouveaux matériaux de stockage dénergie, publié dans la sous-journal Nature.

图示:用于储能的聚合物的人工智能辅助设计。(来源:论文)

1. 创新性聚降冰片烯电介质

研究人员发现了一种之前未知的聚降冰片烯电介质,名为 PONB-2Me5Cl。

2. 出色的能量密度

PONB-2Me5Cl a une excellente densité d'énergie de 8,3 J/cc à 200°C, supérieure à toutes les alternatives commerciales, ce qui en fait l'un des meilleurs diélectriques polymères rapportés à cette température.

3. Par rapport à d'autres polymères

En dessous de 200°C, la densité énergétique du PONB-2Me5Cl est également supérieure à celle de tous les polymères commerciaux, juste derrière le PSBNP-co-PTNI0,02.

4. Considérations sur la synthèse

Le PSBNP-co-PTNI0.02 étant un copolymère, sa synthèse peut nécessiter plus d'étapes. De plus, les différences dans les protocoles de mesure peuvent également affecter les résultats de comparaison.

La performance est 11 fois supérieure, les équipes de Georgia Tech et Tsinghua ont utilisé lIA pour aider à découvrir de nouveaux matériaux de stockage dénergie, publié dans la sous-journal Nature.

Illustration : Remplissage de vides diélectriques. (Source : article)

PONB-2Me5Cl a été découvert in silico à l'aide de l'algorithme polyVERSE, puis synthétisé et caractérisé. La découverte du polymère PONB-2Me5Cl haute performance et le développement du paradigme polyVERSE sont deux résultats de ces travaux.

De plus, l'équipe a proposé une série d'optimisations de la conception des polymères qui doivent être prises en compte à l'avenir. Ceux-ci incluent :

  1. Versions améliorées de PONB-2Me5Cl (obtenues par l'ingénierie du groupe R ou l'ajout de nanocharges ou de revêtements)
  2. Polyimides sélectionnés, que les chercheurs ont basés sur les fonctionnalités existantes Une catégorie préférée pour les polymères à haute température .

Ces conceptions montrent le potentiel d'augmenter l'Ue à haute température et de réduire les pertes, tout en permettant également l'utilisation de solvants verts pour la synthèse.

En utilisant un seul des nombreux modèles polymères, cette étude démontre la puissance de l'intelligence artificielle dans la production de diélectriques polymères avancés dotés de capacités de stockage d'énergie exceptionnelles.

Lien papier : https://www.nature.com/articles/s41467-024-50413-x

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques mois By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Bytedance Cutting lance le super abonnement SVIP : 499 yuans pour un abonnement annuel continu, offrant une variété de fonctions d'IA Jun 28, 2024 am 03:51 AM

Ce site a rapporté le 27 juin que Jianying est un logiciel de montage vidéo développé par FaceMeng Technology, une filiale de ByteDance. Il s'appuie sur la plateforme Douyin et produit essentiellement du contenu vidéo court pour les utilisateurs de la plateforme. Il est compatible avec iOS, Android et. Windows, MacOS et autres systèmes d'exploitation. Jianying a officiellement annoncé la mise à niveau de son système d'adhésion et a lancé un nouveau SVIP, qui comprend une variété de technologies noires d'IA, telles que la traduction intelligente, la mise en évidence intelligente, l'emballage intelligent, la synthèse humaine numérique, etc. En termes de prix, les frais mensuels pour le clipping SVIP sont de 79 yuans, les frais annuels sont de 599 yuans (attention sur ce site : équivalent à 49,9 yuans par mois), l'abonnement mensuel continu est de 59 yuans par mois et l'abonnement annuel continu est de 59 yuans par mois. est de 499 yuans par an (équivalent à 41,6 yuans par mois) . En outre, le responsable de Cut a également déclaré que afin d'améliorer l'expérience utilisateur, ceux qui se sont abonnés au VIP d'origine

Repoussant les limites de la détection de défauts traditionnelle, « Defect Spectrum » permet pour la première fois une détection de défauts industriels d'une ultra haute précision et d'une sémantique riche. Repoussant les limites de la détection de défauts traditionnelle, « Defect Spectrum » permet pour la première fois une détection de défauts industriels d'une ultra haute précision et d'une sémantique riche. Jul 26, 2024 pm 05:38 PM

Dans la fabrication moderne, une détection précise des défauts est non seulement la clé pour garantir la qualité des produits, mais également la clé de l’amélioration de l’efficacité de la production. Cependant, les ensembles de données de détection de défauts existants manquent souvent de précision et de richesse sémantique requises pour les applications pratiques, ce qui rend les modèles incapables d'identifier des catégories ou des emplacements de défauts spécifiques. Afin de résoudre ce problème, une équipe de recherche de premier plan composée de l'Université des sciences et technologies de Hong Kong, Guangzhou et de Simou Technology a développé de manière innovante l'ensemble de données « DefectSpectrum », qui fournit une annotation à grande échelle détaillée et sémantiquement riche des défauts industriels. Comme le montre le tableau 1, par rapport à d'autres ensembles de données industrielles, l'ensemble de données « DefectSpectrum » fournit le plus grand nombre d'annotations de défauts (5 438 échantillons de défauts) et la classification de défauts la plus détaillée (125 catégories de défauts).

Le modèle de dialogue NVIDIA ChatQA a évolué vers la version 2.0, avec la longueur du contexte mentionnée à 128 Ko Le modèle de dialogue NVIDIA ChatQA a évolué vers la version 2.0, avec la longueur du contexte mentionnée à 128 Ko Jul 26, 2024 am 08:40 AM

La communauté ouverte LLM est une époque où une centaine de fleurs fleurissent et s'affrontent. Vous pouvez voir Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 et bien d'autres. excellents interprètes. Cependant, par rapport aux grands modèles propriétaires représentés par le GPT-4-Turbo, les modèles ouverts présentent encore des lacunes importantes dans de nombreux domaines. En plus des modèles généraux, certains modèles ouverts spécialisés dans des domaines clés ont été développés, tels que DeepSeek-Coder-V2 pour la programmation et les mathématiques, et InternVL pour les tâches de langage visuel.

Formation avec des millions de données cristallines pour résoudre le problème de la phase cristallographique, la méthode d'apprentissage profond PhAI est publiée dans Science Formation avec des millions de données cristallines pour résoudre le problème de la phase cristallographique, la méthode d'apprentissage profond PhAI est publiée dans Science Aug 08, 2024 pm 09:22 PM

Editeur | KX À ce jour, les détails structurels et la précision déterminés par cristallographie, des métaux simples aux grandes protéines membranaires, sont inégalés par aucune autre méthode. Cependant, le plus grand défi, appelé problème de phase, reste la récupération des informations de phase à partir d'amplitudes déterminées expérimentalement. Des chercheurs de l'Université de Copenhague au Danemark ont ​​développé une méthode d'apprentissage en profondeur appelée PhAI pour résoudre les problèmes de phase cristalline. Un réseau neuronal d'apprentissage en profondeur formé à l'aide de millions de structures cristallines artificielles et de leurs données de diffraction synthétique correspondantes peut générer des cartes précises de densité électronique. L'étude montre que cette méthode de solution structurelle ab initio basée sur l'apprentissage profond peut résoudre le problème de phase avec une résolution de seulement 2 Angströms, ce qui équivaut à seulement 10 à 20 % des données disponibles à la résolution atomique, alors que le calcul ab initio traditionnel

Google AI a remporté la médaille d'argent de l'Olympiade mathématique de l'OMI, le modèle de raisonnement mathématique AlphaProof a été lancé et l'apprentissage par renforcement est de retour. Google AI a remporté la médaille d'argent de l'Olympiade mathématique de l'OMI, le modèle de raisonnement mathématique AlphaProof a été lancé et l'apprentissage par renforcement est de retour. Jul 26, 2024 pm 02:40 PM

Pour l’IA, l’Olympiade mathématique n’est plus un problème. Jeudi, l'intelligence artificielle de Google DeepMind a réalisé un exploit : utiliser l'IA pour résoudre la vraie question de l'Olympiade mathématique internationale de cette année, l'OMI, et elle n'était qu'à un pas de remporter la médaille d'or. Le concours de l'OMI qui vient de se terminer la semaine dernière comportait six questions portant sur l'algèbre, la combinatoire, la géométrie et la théorie des nombres. Le système d'IA hybride proposé par Google a répondu correctement à quatre questions et a marqué 28 points, atteignant le niveau de la médaille d'argent. Plus tôt ce mois-ci, le professeur titulaire de l'UCLA, Terence Tao, venait de promouvoir l'Olympiade mathématique de l'IA (AIMO Progress Award) avec un prix d'un million de dollars. De manière inattendue, le niveau de résolution de problèmes d'IA s'était amélioré à ce niveau avant juillet. Posez les questions simultanément sur l'OMI. La chose la plus difficile à faire correctement est l'OMI, qui a la plus longue histoire, la plus grande échelle et la plus négative.

Le point de vue de la nature : les tests de l'intelligence artificielle en médecine sont dans le chaos. Que faut-il faire ? Le point de vue de la nature : les tests de l'intelligence artificielle en médecine sont dans le chaos. Que faut-il faire ? Aug 22, 2024 pm 04:37 PM

Editeur | ScienceAI Sur la base de données cliniques limitées, des centaines d'algorithmes médicaux ont été approuvés. Les scientifiques se demandent qui devrait tester les outils et comment le faire au mieux. Devin Singh a vu un patient pédiatrique aux urgences subir un arrêt cardiaque alors qu'il attendait un traitement pendant une longue période, ce qui l'a incité à explorer l'application de l'IA pour réduire les temps d'attente. À l’aide des données de triage des salles d’urgence de SickKids, Singh et ses collègues ont construit une série de modèles d’IA pour fournir des diagnostics potentiels et recommander des tests. Une étude a montré que ces modèles peuvent accélérer les visites chez le médecin de 22,3 %, accélérant ainsi le traitement des résultats de près de 3 heures par patient nécessitant un examen médical. Cependant, le succès des algorithmes d’intelligence artificielle dans la recherche ne fait que le vérifier.

Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Afin de fournir un nouveau système de référence et d'évaluation de questions-réponses scientifiques et complexes pour les grands modèles, l'UNSW, Argonne, l'Université de Chicago et d'autres institutions ont lancé conjointement le cadre SciQAG. Jul 25, 2024 am 06:42 AM

L'ensemble de données ScienceAI Question Answering (QA) joue un rôle essentiel dans la promotion de la recherche sur le traitement du langage naturel (NLP). Des ensembles de données d'assurance qualité de haute qualité peuvent non seulement être utilisés pour affiner les modèles, mais également évaluer efficacement les capacités des grands modèles linguistiques (LLM), en particulier la capacité à comprendre et à raisonner sur les connaissances scientifiques. Bien qu’il existe actuellement de nombreux ensembles de données scientifiques d’assurance qualité couvrant la médecine, la chimie, la biologie et d’autres domaines, ces ensembles de données présentent encore certaines lacunes. Premièrement, le formulaire de données est relativement simple, et la plupart sont des questions à choix multiples. Elles sont faciles à évaluer, mais limitent la plage de sélection des réponses du modèle et ne peuvent pas tester pleinement la capacité du modèle à répondre aux questions scientifiques. En revanche, les questions et réponses ouvertes

PRO | Pourquoi les grands modèles basés sur le MoE méritent-ils davantage d'attention ? PRO | Pourquoi les grands modèles basés sur le MoE méritent-ils davantage d'attention ? Aug 07, 2024 pm 07:08 PM

En 2023, presque tous les domaines de l’IA évoluent à une vitesse sans précédent. Dans le même temps, l’IA repousse constamment les limites technologiques de domaines clés tels que l’intelligence embarquée et la conduite autonome. Sous la tendance multimodale, le statut de Transformer en tant qu'architecture dominante des grands modèles d'IA sera-t-il ébranlé ? Pourquoi l'exploration de grands modèles basés sur l'architecture MoE (Mixture of Experts) est-elle devenue une nouvelle tendance dans l'industrie ? Les modèles de grande vision (LVM) peuvent-ils constituer une nouvelle avancée dans la vision générale ? ...Dans la newsletter des membres PRO 2023 de ce site publiée au cours des six derniers mois, nous avons sélectionné 10 interprétations spéciales qui fournissent une analyse approfondie des tendances technologiques et des changements industriels dans les domaines ci-dessus pour vous aider à atteindre vos objectifs dans le nouveau année. Cette interprétation provient de la Week50 2023

See all articles