


Le nouveau travail de CMU et Tsinghua : laissez LLM synthétiser les données pour apprendre par lui-même, et l'exécution de tâches spécifiques est également grandement améliorée.
Bien que les modèles de langage à grande échelle (LLM) fonctionnent bien dans de nombreuses tâches de traitement du langage naturel, leurs résultats dans des tâches spécifiques ne sont pas satisfaisants. Afin d’améliorer les performances des modèles sur des tâches spécifiques en langage naturel, les méthodes existantes s’appuient principalement sur des données annotées manuellement de haute qualité. Le processus de collecte de ce type de données prend du temps et est laborieux, particulièrement difficile pour les tâches où les données sont rares.
Afin de résoudre ce problème, certaines recherches tentent de générer des données de formation via un puissant modèle d'enseignant afin d'améliorer les performances du modèle d'étudiant sur des tâches spécifiques. Cependant, cette approche se heurte encore à de nombreux défis en termes de coût, d’évolutivité et de conformité légale. Lorsqu’il est impossible d’obtenir en continu des signaux de supervision humaine de haute qualité, la capacité d’itérer continuellement le modèle est devenue un problème urgent à résoudre.
Une équipe de recherche de l'Université Carnegie Mellon et de l'Université Tsinghua a proposé la méthode SELF-GUIDE. Cette méthode génère un ensemble de données spécifiques à une tâche par le modèle de langage lui-même et l'affine sur cet ensemble de données, améliorant ainsi considérablement la capacité du modèle sur une tâche spécifique sans s'appuyer sur une grande quantité de données externes de haute qualité ou sur un logiciel plus puissant. Modèle d'enseignant. Plus précisément, avec environ 3 échantillons d'entrée externes, SELF-GUIDE utilise un mécanisme de génération et de filtrage en plusieurs étapes pour affiner le modèle à l'aide de données synthétiques générées par le modèle afin d'améliorer les performances du modèle sur des tâches spécifiques.
Méthode
Plus précisément, l'équipe de recherche a décomposé la méthode SELF-GUIDE en trois étapes principales : génération de données d'entrée, génération de données de sortie et optimisation de la qualité.
Génération de données d'entrée
Dans le processus de conception et de mise en œuvre du cadre SELF-GUIDE, le chercheur a d'abord spécifié différents modèles d'invite en fonction du type de tâche (tâche générative ou tâche de classification). Pour les tâches génératives, le framework SELF-GUIDE utilise un modèle d'invite relativement simple. Pour les tâches de classification, le cadre SELF-GUIDE adopte une autre stratégie. Pour les tâches de classification, le framework SELF-GUIDE sélectionne d'abord de manière aléatoire une étiquette dans tous les espaces d'étiquettes et l'utilise comme pseudo-étiquette générée de manière conditionnelle pour guider la génération des données d'entrée. Après avoir sélectionné un pseudo-étiquette, le cadre SELF-GUIDE utilise des conditions plus complexes pour générer un modèle afin de guider le modèle afin de générer un contenu d'entrée correspondant au pseudo-étiquette sélectionné.
Une fois le modèle sélectionné et les quelques exemples remplis, l'invite complète est transmise au LLM pour générer les données d'entrée. Après chaque série d'invites, les entrées nouvellement générées sont ajoutées à la bibliothèque d'entrées. Un sous-ensemble des entrées est échantillonné de manière aléatoire dans cette bibliothèque et fusionné avec les entrées de l'exemple initial pour former de nouveaux signaux, élargissant progressivement l'ensemble des entrées générées par le LLM et réduisant la duplication. SELF-GUIDE effectue un seul cycle de génération d'entrées, suivi d'une phase d'optimisation de la qualité au cours de laquelle des filtres basés sur des règles sont appliqués pour supprimer les entrées de mauvaise qualité.
Figure 3 : Cette figure décrit le processus d'AUTO-GUIDE accomplissant la tâche de classification. Pour les données des tâches de classification, SELF-GUIDE génère d'abord des pseudo-étiquettes, puis génère les entrées correspondantes et enfin régénère les véritables étiquettes.
Génération de données de sortie
La phase de génération de données de sortie utilise une méthode d'apprentissage contextuelle typique : le chercheur fournit des instructions de tâche et des exemples originaux au modèle, permettant au modèle d'étiqueter chaque entrée générée dans la phase de génération d'entrée. Une fois toutes les sorties obtenues, une autre série de filtrage basé sur des règles est effectuée pour sélectionner l'ensemble de données synthétiques final.
Optimisation de la qualité
La qualité des données générées est essentielle au succès de la formation en aval. SELF-GUIDE adopte deux stratégies pour améliorer la qualité : ajuster les paramètres de génération pour améliorer la qualité de la génération et filtrer les échantillons de mauvaise qualité en fonction de règles.
Ajuster la température : L’ajustement de la température est une stratégie courante pour équilibrer variété et qualité. Le cadre SELF-GUIDE utilise des températures plus élevées dans l'étape de génération d'entrée pour encourager la diversité et des températures plus basses dans d'autres étapes afin de garantir la sortie la plus probable, garantissant ainsi la qualité globale des données. Cependant, l’ajustement de la température ne suffit pas à lui seul à atteindre l’équilibre souhaité. Par conséquent, SELF-GUIDE effectue également deux cycles de filtrage des données basés sur des règles après la génération des entrées et après l'annotation des sorties.
Filtre de bruit : le chercheur a compilé manuellement une liste de termes bruyants, y compris les salutations et les caractères de bruit courants (par exemple, " " dans le contenu généré, le cas échéant, dans l'entrée ou la sortie de l'exemple de termes bruyants générés à partir de celui-ci). liste, SELF-GUIDE supprimera l'intégralité de l'exemple.
Filtre de longueur : bien que la longueur des exemples puisse être biaisée, les chercheurs pensent que ces exemples sont toujours représentatifs en termes de distribution de longueur de la tâche spécifique. la longueur de l'exemple suit une distribution normale et calcule la moyenne μ et l'écart type σ de l'exemple d'entrée. Le chercheur suppose que les longueurs d'entrée et de sortie des exemples générés doivent être conformes à la même distribution normale et exige que la longueur soit conforme à la même distribution normale. être dans (μ − 2σ, μ + 2σ).
Un paramètre pour tous : pour que SELF-GUIDE génère des données d'entraînement conformes à la distribution cible spécifiée par les instructions et les exemples, divers hyperparamètres doivent être optimisés sur l'étiquette. points de données, y compris le nombre d'entrées et de sorties générées, la température à laquelle les données d'entrée sont générées, la température à laquelle les données de sortie sont générées, les paramètres de réglage fin, etc. Le chercheur divise la tâche de test expérimental en deux parties : une partie peut utiliser toutes les données pour la vérification afin d'ajuster les paramètres de génération, ce que l'on appelle la tâche de vérification ; L'autre partie des données est uniquement utilisée pour les tests et ne peut pas être utilisée pour ajuster les paramètres, ce que le chercheur recherche. les paramètres qui « maximisent les pires performances de la tâche » sur la tâche de vérification et les corrigent pour évaluer les performances de SELF-GUIDE sur les tâches de test
Résultats expérimentaux
Pour évaluer l'efficacité de SELF-GUIDE, les chercheurs ont sélectionné 14 tâches de classification et 8 générations. tâches du benchmark Super-NaturalInstructions V2. Les chercheurs ont sélectionné au hasard la moitié des tâches pour la recherche de paramètres Super-NaturalInstructions, la moitié restante est utilisée pour l'évaluation, les chercheurs ont choisi Vicuna-7b-1.5 comme modèle de base. pour la génération d'entrées, la génération de sorties et le réglage fin, les chercheurs ont utilisé les mêmes que le benchmark Super-Natural Instructions. Les indicateurs d'évaluation sont Exact Match pour la tâche de classification et ROUGE-L pour la tâche de génération. Afin de refléter l'effet de SELF-GUIDE, les chercheurs ont comparé SELF-GUIDE avec d'autres méthodes de suivi d'instructions et d'apprentissage contextuel :
1.Few-Shot ICL : comme référence principale, les chercheurs ont comparé cette approche avec des modèles de langage à indice direct. s'appuie directement sur la capacité inhérente de suivi des instructions du modèle.
2. Self-ICL : Self-ICL utilise des exemples auto-générés pour améliorer le suivi des instructions zéro. référencez des échantillons en générant automatiquement autant d’exemples que possible (au lieu d’un nombre fixe d’exemples) pour remplir les mots d’invite.
3.Réglage fin en quelques prises de vue : utilisez directement un petit nombre d'échantillons d'entrée pour un réglage fin.
AUTO-GUIDE Les principaux résultats expérimentaux du texte original sont les suivants. Sur les paramètres d'évaluation de base, l'amélioration absolue pour la tâche de classification a atteint 14,5 %, tandis que l'amélioration absolue pour la tâche de génération a atteint 17,9 %. Ces résultats démontrent que SELF-GUIDE est très efficace pour guider le LLM vers une spécialisation spécifique à une tâche, même lorsque les données sont extrêmement limitées. Cela met en évidence le potentiel des données auto-générées pour adapter le LLM à des tâches spécifiques à grande échelle. Pour plus de résultats expérimentaux et d’expériences d’ablation, veuillez vous référer à l’article original.
Figure 4 : Pour chaque type de tâche (tâches de classification et de génération), le chercheur a divisé la tâche au hasard en deux moitiés, une moitié a été utilisée pour déboguer les paramètres de la stratégie "One Parameter Fits All", et l'autre la moitié a été utilisée pour utiliser ces paramètres débogués. Les paramètres testent les performances de SELF-GUIDE. Nous utilisons les mêmes paramètres de décodage et modèles de repères pour évaluer les performances du modèle avant et après SELF-GUIDE.
Le framework SELF-GUIDE encourage les modèles à générer de manière autonome des données d'entraînement et à affiner ces données. Les résultats expérimentaux montrent que cette méthode a un grand potentiel pour améliorer les capacités professionnelles des modèles de langage à grande échelle pour des tâches spécifiques, en particulier lorsque les données sont limitées. SELF-GUIDE peut résoudre efficacement le problème du manque de données de formation. Dans le même temps, cela constitue également une référence pour explorer les technologies d’adaptation autonome des modèles et d’apprentissage continu. Les chercheurs espèrent que ces travaux favoriseront le développement de systèmes d’IA dans des mécanismes d’alignement et d’amélioration autonomes pour les rendre plus cohérents avec les intentions humaines.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Il s'agit également d'une vidéo Tusheng, mais PaintsUndo a emprunté une voie différente. L'auteur de ControlNet, LvminZhang, a recommencé à vivre ! Cette fois, je vise le domaine de la peinture. Le nouveau projet PaintsUndo a reçu 1,4kstar (toujours en hausse folle) peu de temps après son lancement. Adresse du projet : https://github.com/lllyasviel/Paints-UNDO Grâce à ce projet, l'utilisateur saisit une image statique et PaintsUndo peut automatiquement vous aider à générer une vidéo de l'ensemble du processus de peinture, du brouillon de ligne au suivi du produit fini. . Pendant le processus de dessin, les changements de lignes sont étonnants. Le résultat vidéo final est très similaire à l’image originale : jetons un coup d’œil à un dessin complet.

La colonne AIxiv est une colonne où ce site publie du contenu académique et technique. Au cours des dernières années, la rubrique AIxiv de ce site a reçu plus de 2 000 rapports, couvrant les meilleurs laboratoires des principales universités et entreprises du monde entier, favorisant efficacement les échanges et la diffusion académiques. Si vous souhaitez partager un excellent travail, n'hésitez pas à contribuer ou à nous contacter pour un rapport. Courriel de soumission : liyazhou@jiqizhixin.com ; zhaoyunfeng@jiqizhixin.com Dans le processus de développement de l'intelligence artificielle, le contrôle et le guidage des grands modèles de langage (LLM) ont toujours été l'un des principaux défis, visant à garantir que ces modèles sont à la fois puissant et sûr au service de la société humaine. Les premiers efforts se sont concentrés sur les méthodes d’apprentissage par renforcement par feedback humain (RL

La colonne AIxiv est une colonne où ce site publie du contenu académique et technique. Au cours des dernières années, la rubrique AIxiv de ce site a reçu plus de 2 000 rapports, couvrant les meilleurs laboratoires des principales universités et entreprises du monde entier, favorisant efficacement les échanges et la diffusion académiques. Si vous souhaitez partager un excellent travail, n'hésitez pas à contribuer ou à nous contacter pour un rapport. Courriel de soumission : liyazhou@jiqizhixin.com ; zhaoyunfeng@jiqizhixin.com Les auteurs de cet article font tous partie de l'équipe de l'enseignant Zhang Lingming de l'Université de l'Illinois à Urbana-Champaign (UIUC), notamment : Steven Code repair ; doctorant en quatrième année, chercheur

acclamations! Qu’est-ce que ça fait lorsqu’une discussion sur papier se résume à des mots ? Récemment, des étudiants de l'Université de Stanford ont créé alphaXiv, un forum de discussion ouvert pour les articles arXiv qui permet de publier des questions et des commentaires directement sur n'importe quel article arXiv. Lien du site Web : https://alphaxiv.org/ En fait, il n'est pas nécessaire de visiter spécifiquement ce site Web. Il suffit de remplacer arXiv dans n'importe quelle URL par alphaXiv pour ouvrir directement l'article correspondant sur le forum alphaXiv : vous pouvez localiser avec précision les paragraphes dans. l'article, Phrase : dans la zone de discussion sur la droite, les utilisateurs peuvent poser des questions à l'auteur sur les idées et les détails de l'article. Par exemple, ils peuvent également commenter le contenu de l'article, tels que : "Donné à".

Récemment, l’hypothèse de Riemann, connue comme l’un des sept problèmes majeurs du millénaire, a réalisé une nouvelle avancée. L'hypothèse de Riemann est un problème mathématique non résolu très important, lié aux propriétés précises de la distribution des nombres premiers (les nombres premiers sont les nombres qui ne sont divisibles que par 1 et par eux-mêmes, et jouent un rôle fondamental dans la théorie des nombres). Dans la littérature mathématique actuelle, il existe plus d'un millier de propositions mathématiques basées sur l'établissement de l'hypothèse de Riemann (ou sa forme généralisée). En d’autres termes, une fois que l’hypothèse de Riemann et sa forme généralisée seront prouvées, ces plus d’un millier de propositions seront établies sous forme de théorèmes, qui auront un impact profond sur le domaine des mathématiques et si l’hypothèse de Riemann s’avère fausse, alors parmi eux ; ces propositions qui en font partie perdront également de leur efficacité. Une nouvelle percée vient du professeur de mathématiques du MIT, Larry Guth, et de l'Université d'Oxford

Si la réponse donnée par le modèle d’IA est incompréhensible du tout, oseriez-vous l’utiliser ? À mesure que les systèmes d’apprentissage automatique sont utilisés dans des domaines de plus en plus importants, il devient de plus en plus important de démontrer pourquoi nous pouvons faire confiance à leurs résultats, et quand ne pas leur faire confiance. Une façon possible de gagner confiance dans le résultat d'un système complexe est d'exiger que le système produise une interprétation de son résultat qui soit lisible par un humain ou un autre système de confiance, c'est-à-dire entièrement compréhensible au point que toute erreur possible puisse être trouvé. Par exemple, pour renforcer la confiance dans le système judiciaire, nous exigeons que les tribunaux fournissent des avis écrits clairs et lisibles qui expliquent et soutiennent leurs décisions. Pour les grands modèles de langage, nous pouvons également adopter une approche similaire. Cependant, lorsque vous adoptez cette approche, assurez-vous que le modèle de langage génère

Les modèles linguistiques peuvent-ils vraiment être utilisés pour la prédiction de séries chronologiques ? Selon la loi des gros titres de Betteridge (tout titre d'actualité se terminant par un point d'interrogation peut recevoir une réponse « non »), la réponse devrait être non. Le fait semble être vrai : un LLM aussi puissant ne peut pas bien gérer les données de séries chronologiques. Les séries chronologiques, c'est-à-dire les séries chronologiques, comme leur nom l'indique, font référence à un ensemble de séquences de points de données disposées par ordre temporel. L'analyse des séries chronologiques est essentielle dans de nombreux domaines, notamment la prévision de la propagation des maladies, l'analyse du commerce de détail, la santé et la finance. Dans le domaine de l'analyse des séries chronologiques, de nombreux chercheurs ont récemment étudié comment utiliser les grands modèles linguistiques (LLM) pour classer, prédire et détecter les anomalies dans les séries chronologiques. Ces articles supposent que les modèles de langage capables de gérer les dépendances séquentielles dans le texte peuvent également se généraliser aux séries chronologiques.

La colonne AIxiv est une colonne où ce site publie du contenu académique et technique. Au cours des dernières années, la rubrique AIxiv de ce site a reçu plus de 2 000 rapports, couvrant les meilleurs laboratoires des principales universités et entreprises du monde entier, favorisant efficacement les échanges et la diffusion académiques. Si vous souhaitez partager un excellent travail, n'hésitez pas à contribuer ou à nous contacter pour un rapport. Courriel de soumission : liyazhou@jiqizhixin.com ; zhaoyunfeng@jiqizhixin.com. Introduction Ces dernières années, l'application de grands modèles de langage multimodaux (MLLM) dans divers domaines a connu un succès remarquable. Cependant, en tant que modèle de base pour de nombreuses tâches en aval, le MLLM actuel se compose du célèbre réseau Transformer, qui
