


Analyse des données avec Python : Analyse de l'indice mondial de développement et de prospérité pour l'année 3
L'ensemble de données de ce projet contient des enregistrements de l'indice mondial de développement et de prospérité pour l'année 2023
Le nettoyage, l'analyse et la visualisation des données ont été effectués à l'aide de Python. L'analyse fournit des réponses à certaines questions importantes et permet de comprendre l'ensemble de données.
Structure des données :
Les colonnes de l'ensemble de données incluent : Code du pays, pays, score moyen, sécurité, liberté du personnel, gouvernance, capital social, environnement d'investissement, conditions d'entreprise, infrastructure d'accès au marché, qualité économique, conditions de vie, santé, éducation, environnement naturel.
Les bibliothèques Python nécessaires pour effectuer cette analyse ont été importées dans Python IDLE (Jupyter Notebook), et l'ensemble de données a été chargé pour commencer l'analyse.
Le nombre total de colonnes et de lignes présentes dans l'ensemble de données indique 167 lignes et 14 colonnes.
10 échantillons aléatoires de l'ensemble de données pour voir à quoi ressemble l'ensemble de données.
Nettoyage des données
Le nettoyage des données a été effectué à l'aide de la bibliothèque python pandas afin de « nettoyer » l'ensemble de données et de le préparer pour l'analyse.
•Vérification des valeurs manquantes dans l'ensemble de données
L'image ci-dessus montre que l'ensemble de données ne contenait aucune valeur manquante
L'image ci-dessus montre qu'il n'y avait aucun doublon dans l'ensemble de données.
## Analyse et exploration des données
1) Les dix premiers pays par score moyen de l'indice de prospérité mondial :
•La visualisation montre les dix premiers pays classés selon leurs scores moyens sur l'indice de prospérité mondiale. Ces pays affichent de solides performances dans divers indicateurs tels que la gouvernance, l’éducation, la santé et la qualité économique. Les scores élevés indiquent une approche solide et équilibrée visant à favoriser la prospérité et le bien-être de leurs citoyens, reflétant des politiques efficaces et un environnement socio-économique favorable.
**2) Les dix derniers pays par score moyen :
•Cette liste et cette visualisation mettent en évidence les domaines dans lesquels ces pays pourraient devoir concentrer leurs efforts pour améliorer leurs scores globaux, contribuant ainsi à une meilleure qualité de vie et à de meilleurs résultats de développement pour leurs citoyens. Il constitue un outil précieux pour les décideurs politiques, les chercheurs et les parties prenantes intéressés par le développement international et l'analyse comparative.
*3) Domaines les mieux notés par les dix premiers pays : *
Cette liste et cette visualisation intitulées « Zones ayant obtenu les scores les plus élevés selon les dix premiers pays » illustrent les mesures les plus performantes pour les dix pays ayant les scores moyens les plus élevés. Ces mesures englobent diverses dimensions de la réussite nationale, notamment la sécurité, la liberté du personnel, la gouvernance, le capital social, la qualité économique, etc.
4) Domaines d'amélioration pour les dix derniers pays :
Cette liste et ce graphique intitulés « Zones ayant obtenu les scores les plus élevés selon les dix premiers pays » illustrent les mesures les plus performantes pour les dix pays ayant les scores moyens les plus élevés. Ces mesures englobent diverses dimensions de la réussite nationale, notamment la sécurité, la liberté du personnel, la gouvernance, le capital social, la qualité économique, etc.
5)Relation entre gouvernance et conditions de vie :
La corrélation de 0,71 entre la gouvernance et les conditions de vie souligne l'importance d'une gouvernance solide en tant que moteur clé de l'amélioration des conditions de vie. Cette relation suggère que les efforts visant à renforcer les structures de gouvernance peuvent avoir un impact positif significatif sur la qualité de vie de la population d’un pays. Les décideurs politiques et les organisations de développement peuvent utiliser ces informations pour donner la priorité aux réformes de la gouvernance en tant que stratégie visant à améliorer les conditions de vie.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
