


Créez votre propre agent LLM personnalisé à l'aide de modèles Open Source (llama)
Dans cet article, nous apprendrons comment créer un agent personnalisé qui utilise un llm open source (llama3.1) qui s'exécute localement sur notre PC. Nous utiliserons également Ollama et LangChain.
Contour
- Installer Ollama
- Modèle à tirer
- Servir le modèle
- Créez un nouveau dossier, ouvrez-le avec un éditeur de code
- Créer et activer un environnement virtuel
- Installer langchain langchain-ollama
- Créer un agent personnalisé avec un modèle open source en Python
- Conclusion
Installer Ollama
Suivez les instructions en fonction de votre type de système d'exploitation dans son GitHub README pour installer Ollama :
https://github.com/ollama/ollama
Je suis sur un PC basé sur Linux, je vais donc exécuter la commande suivante dans mon terminal :
curl -fsSL https://ollama.com/install.sh | sh
Modèle à tirer
Récupérez le modèle LLM disponible via la commande suivante :
ollama pull llama3.1
Cela téléchargera la version balisée par défaut du modèle. En règle générale, la valeur par défaut pointe vers le modèle de paramètres de taille la plus récente et la plus petite. Dans ce cas, il s'agira du modèle lama3.1:8b.
Pour télécharger une autre version du modèle, vous pouvez vous rendre sur : https://ollama.com/library/llama3.1 et sélectionner la version à installer, puis exécuter la commande ollama pull avec le modèle et son numéro de version . Exemple : ollama pull lama3.1:70b
Sur Mac, les modèles seront téléchargés sur ~/.ollama/models
Sous Linux (ou WSL), les modèles seront stockés dans /usr/share/ollama/.ollama/models
Servir le modèle
Exécutez la commande suivante pour démarrer ollama sans exécuter l'application de bureau.
ollama serve
Tous les modèles sont automatiquement servis sur localhost:11434
Créez un nouveau dossier, ouvrez-le avec un éditeur de code
Créez un nouveau dossier sur votre ordinateur puis ouvrez-le avec un éditeur de code comme VS Code.
Créer et activer un environnement virtuel
Ouvrez le terminal. Utilisez la commande suivante pour créer un environnement virtuel .venv et activez-le :
python3 -m venv .venv
source .venv/bin/activate
Installer Langchain Langchain-ollama
Exécutez la commande suivante pour installer langchain et langchain-ollama :
pip install -U langchain langchain-ollama
La commande ci-dessus installera ou mettra à niveau les packages LangChain et LangChain-Ollama en Python. L'indicateur -U garantit que les dernières versions de ces packages sont installées, remplaçant toutes les anciennes versions éventuellement déjà présentes.
Créer un agent personnalisé avec un modèle open source en Python
Créez un fichier Python par exemple : main.py et ajoutez le code suivant :
from langchain_ollama import ChatOllama from langchain.agents import tool from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents import AgentExecutor from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser llm = ChatOllama( model="llama3.1", temperature=0, verbose=True ) @tool def get_word_length(word: str) -> int: """Returns the length of a word.""" return len(word) tools = [get_word_length] prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are very powerful assistant", ), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) llm_with_tools = llm.bind_tools(tools) agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) # Create an agent executor by passing in the agent and tools agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) result = agent_executor.invoke({"input": "How many letters in the word educa"}) if result: print(f"[Output] --> {result['output']}") else: print('There are no result..')
L'extrait de code ci-dessus configure un agent LangChain utilisant le modèle ChatOllama (llama3.1) pour traiter les entrées de l'utilisateur et utiliser un outil personnalisé qui calcule la longueur des mots. Il définit un modèle d'invite pour l'agent, lie l'outil au modèle de langage et construit un agent qui traite les entrées et formate les étapes intermédiaires. Enfin, il crée un AgentExecutor pour appeler l'agent avec une entrée spécifique. Nous passons une question simple à poser "Combien de lettres dans le mot educa" puis nous imprimons le résultat ou indiquons si aucun résultat n'a été trouvé.
Lorsque nous courons, nous obtenons le résultat suivant :
> Entering new AgentExecutor chain... Invoking: `get_word_length` with `{'word': 'educa'}` 5The word "educa" has 5 letters. > Finished chain. [Output] --> The word "educa" has 5 letters.
Vous voyez que l'agent a utilisé le modèle (llama3.1) pour appeler l'outil correctement afin d'obtenir le nombre de lettres dans le mot.
Conclusion
Merci d'avoir lu.
Vérifiez le dépôt Ollama ici : https://github.com/ollama/ollama
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.
