


Pourquoi devriez-vous utiliser davantage les attributs
Introduction
La bibliothèque attrs de Python change la donne pour les développeurs qui cherchent à simplifier la création de classes et à réduire le code passe-partout. Cette bibliothèque est même approuvée par la NASA.
Créé par Hynek Schlawack en 2015, attrs est rapidement devenu un outil préféré parmi les développeurs Python pour sa capacité à générer automatiquement des méthodes spéciales et à fournir un moyen propre et déclaratif de définir des classes.
les classes de données sont une sorte de sous-ensemble d'attrs.
Pourquoi attrs est utile :
- Réduit le code passe-partout
- Améliore la lisibilité et la maintenabilité du code
- Fournit des fonctionnalités puissantes pour la validation et la conversion des données
- Améliore les performances grâce à des implémentations optimisées
2. Premiers pas avec les attributs
Installation :
Pour commencer avec attrs, vous pouvez l'installer en utilisant pip :
pip install attrs
Utilisation de base :
Voici un exemple simple de la façon d'utiliser attrs pour définir une classe :
import attr @attr.s class Person: name = attr.ib() age = attr.ib() # Creating an instance person = Person("Alice", 30) print(person) # Person(name='Alice', age=30)
3. Caractéristiques principales des attributs
un. Génération automatique de méthodes :
attrs génère automatiquement les méthodes init, repr et eq pour vos classes :
@attr.s class Book: title = attr.ib() author = attr.ib() year = attr.ib() book1 = Book("1984", "George Orwell", 1949) book2 = Book("1984", "George Orwell", 1949) print(book1) # Book(title='1984', author='George Orwell', year=1949) print(book1 == book2) # True
b. Définition d'attribut avec types et valeurs par défaut :
import attr from typing import List @attr.s class Library: name = attr.ib(type=str) books = attr.ib(type=List[str], default=attr.Factory(list)) capacity = attr.ib(type=int, default=1000) library = Library("City Library") print(library) # Library(name='City Library', books=[], capacity=1000)
c. Validateurs et convertisseurs :
import attr def must_be_positive(instance, attribute, value): if value <= 0: raise ValueError("Value must be positive") @attr.s class Product: name = attr.ib() price = attr.ib(converter=float, validator=[attr.validators.instance_of(float), must_be_positive]) product = Product("Book", "29.99") print(product) # Product(name='Book', price=29.99) try: Product("Invalid", -10) except ValueError as e: print(e) # Value must be positive
4. Utilisation avancée
un. Personnalisation du comportement des attributs :
import attr @attr.s class User: username = attr.ib() _password = attr.ib(repr=False) # Exclude from repr @property def password(self): return self._password @password.setter def password(self, value): self._password = hash(value) # Simple hashing for demonstration user = User("alice", "secret123") print(user) # User(username='alice')
b. Instances et emplacements gelés :
@attr.s(frozen=True) # slots=True is the default class Point: x = attr.ib() y = attr.ib() point = Point(1, 2) try: point.x = 3 # This will raise an AttributeError except AttributeError as e: print(e) # can't set attribute
c. Fonctions d'usine et traitement post-init :
import attr import uuid @attr.s class Order: id = attr.ib(factory=uuid.uuid4) items = attr.ib(factory=list) total = attr.ib(init=False) def __attrs_post_init__(self): self.total = sum(item.price for item in self.items) @attr.s class Item: name = attr.ib() price = attr.ib(type=float) order = Order(items=[Item("Book", 10.99), Item("Pen", 1.99)]) print(order) # Order(id=UUID('...'), items=[Item(name='Book', price=10.99), Item(name='Pen', price=1.99)], total=12.98)
5. Meilleures pratiques et pièges courants
Meilleures pratiques :
- Utilisez des annotations de type pour une meilleure lisibilité du code et une prise en charge de l'IDE
- Exploiter les validateurs pour l'intégrité des données
- Utiliser des classes gelées pour les objets immuables
- Profitez de la génération automatique de méthodes pour réduire la duplication de code
Pièges courants :
- Oublier d'utiliser le décorateur @attr.s sur la classe
- Utilisation excessive de validateurs complexes qui pourraient être des méthodes distinctes
- Ne pas prendre en compte l'impact sur les performances d'une utilisation intensive des fonctions d'usine
6. attrs vs autres bibliothèques
Library | Features | Performance | Community |
---|---|---|---|
attrs | Automatic method generation, attribute definition with types and default values, validators and converters | Better performance than manual code | Active community |
pydantic | Data validation and settings management, automatic method generation, attribute definition with types and default values, validators and converters | Good performance | Active community |
dataclasses | Built into Python 3.7+, making them more accessible | Tied to the Python version | Built-in Python library |
attrs and dataclasses are faster than pydantic1.
Comparison with dataclasses:
- attrs is more feature-rich and flexible
- dataclasses are built into Python 3.7+, making them more accessible
- attrs has better performance in most cases
- dataclasses are tied to the Python version, while attrs as an external library can be used with any Python version.
Comparison with pydantic:
- pydantic is focused on data validation and settings management
- attrs is more general-purpose and integrates better with existing codebases
- pydantic has built-in JSON serialization, while attrs requires additional libraries
When to choose attrs:
- For complex class hierarchies with custom behaviors
- When you need fine-grained control over attribute definitions
- For projects that require Python 2 compatibility (though less relevant now)
7. Performance and Real-world Applications
Performance:
attrs generally offers better performance than manually written classes or other libraries due to its optimized implementations.
Real-world example:
from attr import define, Factory from typing import List, Optional @define class Customer: id: int name: str email: str orders: List['Order'] = Factory(list) @define class Order: id: int customer_id: int total: float items: List['OrderItem'] = Factory(list) @define class OrderItem: id: int order_id: int product_id: int quantity: int price: float @define class Product: id: int name: str price: float description: Optional[str] = None # Usage customer = Customer(1, "Alice", "alice@example.com") product = Product(1, "Book", 29.99, "A great book") order_item = OrderItem(1, 1, 1, 2, product.price) order = Order(1, customer.id, 59.98, [order_item]) customer.orders.append(order) print(customer)
8. Conclusion and Call to Action
attrs is a powerful library that simplifies Python class definitions while providing robust features for data validation and manipulation. Its ability to reduce boilerplate code, improve readability, and enhance performance makes it an invaluable tool for Python developers.
Community resources:
- GitHub repository: https://github.com/python-attrs/attrs
- Documentation: https://www.attrs.org/
- PyPI page: https://pypi.org/project/attrs/
Try attrs in your next project and experience its benefits firsthand. Share your experiences with the community and contribute to its ongoing development. Happy coding!
-
https://stefan.sofa-rockers.org/2020/05/29/attrs-dataclasses-pydantic/ ↩
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
