Maison > développement back-end > Tutoriel Python > LangChain Part exploitant la mémoire et le stockage dans LangChain : un guide complet

LangChain Part exploitant la mémoire et le stockage dans LangChain : un guide complet

WBOY
Libérer: 2024-08-21 22:14:25
original
1004 Les gens l'ont consulté

LangChain Part  Leveraging Memory and Storage in LangChain: A Comprehensive Guide

LangChain Part 4 - Leveraging Memory and Storage in LangChain: A Comprehensive Guide

Code can be found here: GitHub - jamesbmour/blog_tutorials:

In the ever-evolving world of conversational AI and language models, maintaining context and efficiently managing information flow are critical components of building intelligent applications. LangChain, a powerful framework designed for working with large language models (LLMs), offers robust tools for memory management and data persistence, enabling the creation of context-aware systems.

In this guide, we'll delve into the nuances of leveraging memory and storage in LangChain to build smarter, more responsive applications.

1. Working with Memory in LangChain

Memory management in LangChain allows applications to retain context, making interactions more coherent and contextually relevant. Let’s explore the different memory types and their use cases.

1.1. Types of Memory

LangChain provides various memory types to address different scenarios. Here, we’ll focus on two key types:

ConversationBufferMemory

This memory type is ideal for short-term context retention, capturing and recalling recent interactions in a conversation.

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory()
memory.save_context({"input": "Hi, I'm Alice"}, {"output": "Hello Alice, how can I help you today?"})
memory.save_context({"input": "What's the weather like?"}, {"output": "I'm sorry, I don't have real-time weather information. Is there anything else I can help you with?"})

print(memory.load_memory_variables({}))

Copier après la connexion

ConversationSummaryMemory

For longer conversations, ConversationSummaryMemory is a great choice. It summarizes key points, maintaining context without overwhelming detail.

from langchain.memory import ConversationSummaryMemory
from langchain.llms import Ollama 

llm = Ollama(model='phi3',temperature=0)
memory = ConversationSummaryMemory(llm=llm)
memory.save_context({"input": "Hi, I'm Alice"}, {"output": "Hello Alice, how can I help you today?"})
memory.save_context({"input": "I'm looking for a good Italian restaurant"}, {"output": "Great! I'd be happy to help you find a good Italian restaurant. Do you have any specific preferences or requirements, such as location, price range, or specific dishes you're interested in?"})

print(memory.load_memory_variables({}))

Copier après la connexion

1.2. Choosing the Right Memory Type for Your Use Case

Selecting the appropriate memory type depends on several factors:

  • Duration and Complexity: Short sessions benefit from detailed context retention with ConversationBufferMemory, while long-term interactions may require summarization via ConversationSummaryMemory.
  • Detail vs. Overview: Determine whether detailed interaction history or high-level summaries are more valuable for your application.
  • Performance: Consider the trade-offs between the memory size and retrieval speed.

Use Cases:

  • ConversationBufferMemory: Ideal for quick customer support or FAQ-style interactions.
  • ConversationSummaryMemory: Best suited for long-term engagements like project management or ongoing customer interactions.

1.3. Integrating Memory into Chains and Agents

Memory can be seamlessly integrated into LangChain chains and agents to enhance conversational capabilities.

from langchain.chains import ConversationChain  
from langchain.memory import ConversationBufferMemory
# llm = OpenAI(temperature=0)
memory = ConversationBufferMemory()
conversation = ConversationChain(
    llm=llm,
    memory=memory,
    verbose=True
)

conversation.predict(input="Hi, I'm Alice")
conversation.predict(input="What's my name?")

Copier après la connexion

This example illustrates how ConversationBufferMemory can be used to remember previous interactions, enabling more natural conversations.

2. Persisting and Retrieving Data

Persistent storage ensures that conversation history and context are maintained across sessions, enabling continuity in interactions.

2.1. Storing Conversation History and State

For basic persistence, you can use file-based storage with JSON:

import json

class PersistentMemory:
    def __init__(self, file_path):
        self.file_path = file_path
        self.load_memory()

    def load_memory(self):
        try:
            with open(self.file_path, 'r') as f:
                self.chat_memory = json.load(f)
        except FileNotFoundError:
            self.chat_memory = {'messages': []}

    def save_memory(self):
        with open(self.file_path, 'w') as f:
            json.dump({'messages': self.chat_memory['messages']}, f)

# Usage
memory = PersistentMemory(file_path='conversation_history.json')
print(memory.chat_memory)
Copier après la connexion

This method allows you to persist conversation history in a simple, human-readable format.

2.2. Integrating with Databases and Storage Systems

For more scalable and efficient storage, integrating with databases like SQLite is recommended:

import sqlite3

class SQLiteMemory:
    def __init__(self, db_path):
        self.db_path = db_path
        self.conn = sqlite3.connect(db_path)
        self.create_table()

    def create_table(self):
        cursor = self.conn.cursor()
        cursor.execute('''
            CREATE TABLE IF NOT EXISTS conversations
            (id INTEGER PRIMARY KEY, input TEXT, output TEXT)
        ''')
        self.conn.commit()

    def save_context(self, inputs, outputs):
        cursor = self.conn.cursor()
        cursor.execute('INSERT INTO conversations (input, output) VALUES (?, ?)',
                       (inputs['input'], outputs['output']))
        self.conn.commit()

    def load_memory_variables(self, inputs):
        cursor = self.conn.cursor()
        cursor.execute('SELECT input, output FROM conversations ORDER BY id DESC LIMIT 10')
        rows = cursor.fetchall()
        history = "\\n".join([f"Human: {row[0]}\\nAI: {row[1]}" for row in reversed(rows)])
        return {"history": history }

# Usage
memory = SQLiteMemory('conversation_history.db')

print(memory.load_memory_variables({}))
Copier après la connexion

3 Optimizing Memory Usage and Performance

To ensure your application remains responsive, consider these optimization strategies:

  • Efficient Data Structures: Use structures like deque for managing fixed-size buffers.
  • Caching Strategies: Reduce database queries by implementing caching for frequently accessed data.
  • Data Pruning: Regularly prune or summarize old data to maintain a manageable memory size.

Here’s an example of a memory class with basic caching:

import time

class CachedSQLiteMemory(SQLiteMemory):
    def __init__(self, db_path, cache_ttl=60):
        super().__init__(db_path)
        self.cache = None
        self.cache_time = 0
        self.cache_ttl = cache_ttl

    def load_memory_variables(self, inputs):
        current_time = time.time()
        if self.cache is None or (current_time - self.cache_time) > self.cache_ttl:
            var = self.cache
            self.cache = super().load_memory_variables(inputs)
            self.cache_time = current_time
            return self.cache

memory = CachedSQLiteMemory('conversation_history.db', cache_ttl=30)
Copier après la connexion

This implementation caches the results of database queries for a specified time, reducing the load on the database and improving performance for applications that frequently access memory data.

Conclusion

Effective memory management is a cornerstone of building intelligent, context-aware conversational AI applications. LangChain provides a flexible and powerful framework for managing memory, allowing developers to tailor memory types to specific use cases, implement persistent storage solutions, and optimize performance for large-scale applications.

올바른 메모리 유형을 선택하고 영구 스토리지를 통합하며 사용자 정의 메모리 클래스 및 캐싱 전략과 같은 고급 기술을 활용하면 규모와 복잡성이 아무리 커져도 컨텍스트를 유지하고 사용자 경험을 개선하며 효율적으로 작동하는 정교한 AI 시스템을 구축할 수 있습니다. 상호작용이 증가합니다.

이러한 도구와 기술을 사용하면 응답성이 뛰어나고 지능적이며 상황에 맞는 AI 애플리케이션을 만드는 데 있어 LangChain의 잠재력을 최대한 활용할 수 있는 준비가 되어 있습니다. 고객 지원 봇, 가상 비서 또는 복잡한 대화 시스템을 개발하는 경우 LangChain의 메모리와 스토리지를 마스터하는 것이 성공의 핵심 요소가 될 것입니다.

제 글을 응원하고 싶거나 맥주 한 잔 사주고 싶으시다면:
https://buymeacoffee.com/bmours

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:dev.to
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal