Maison > développement back-end > Tutoriel Python > Création d'un moteur de requête graphique simple

Création d'un moteur de requête graphique simple

WBOY
Libérer: 2024-08-21 22:47:39
original
530 Les gens l'ont consulté

Dans les 2 derniers blogs, nous avons vu comment installer neo4j et y charger des données. Dans ce blog, nous allons voir comment créer un moteur de requête graphique simple qui répond à notre question mais en récupérant les données de neo4j.

Building A Simple Graph Query Engine

Étape 1 : CONSTRUIRE UNE REQUÊTE CYPHER

  • Pour créer une requête chiffrée, nous devons fournir des informations sur le schéma et les propriétés à GPT avec notre question. L'utilisation de ces métadonnées GPT nous donnera une requête.

  • J'ai structuré l'invite pour renvoyer 3 requêtes pour chaque entrée de l'utilisateur

  1. Expressions régulières - Cette requête aura des modèles d'expressions régulières pour correspondre aux données dans graphDB
  2. Similarité de Levenshtein - Cette requête utilisera la similarité de Levenshtein avec un score seuil supérieur à 0,5 pour faire correspondre et récupérer les données de la base de données graphique.
  3. Correspondance basée sur l'intégration - Nous avons déjà intégré les intégrations dans notre base de données, donc cette requête utilisera l'intégration de la requête de l'utilisateur pour réorganiser la liste complète en utilisant le score de similarité cosinus. Peut-être que cela pourrait être amélioré pour revenir également dans le top 5.
class GraphQueryEngine:
    def __init__(self):
        self.client = OpenAI(api_key="")
        self.url = "bolt://localhost:7687"
        self.auth = ("neo4j", "neo4j@123")

    def get_response(self, user_input):
        """Used to get cypher queries from user input"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in generating Cypher queries for a Neo4j database. Your task is to understand the input and generate only Cypher read queries. Do not return anything other than the Cypher queries, as the returned result will be executed directly in the database."},
                {"role": "user",
                 "content": f"""
                 Schema Information:
                 NODES: Product_type - Contains the distinct types of products such as headphones/mobiles/laptops/washing machines, Product_details - Contains products within a product_type for example apple, samsung within mobiles, DELL within laptops 
                 NODE PROPERTIES: In node Product_type there are name(name of the product type - String), embedding(embedding of the name), and in node Product_details there are name(name of the product - string), price(price of the product - integer), description(description of the product), product_release_date(when product was release on - date), available_stock(stock left - integer), review_rating(product review - float) 
                 DIRECTION OF RELATIONSHIPS: Node Product_type is connected to node Product_details using relationship CONTAINS

                 Based on the schema, generate three read-only Cypher queries related to Product_type (e.g., chairs, headphones, fridge) or Product_details (e.g., name, description) or combination of both. Ensure that product category uses Product_type and product name/ price 

                 Query 1: Use regular expressions (avoid 'contains') - Exclude the 'embedding' property from the result.
                 Query 2: Use `apoc.text.levenshteinSimilarity > 0.5` - Exclude the 'embedding' property from the result.
                 Query 3: Use `gds.similarity.cosine()` to reorder nodes based on similarity scores. The query must include a `%s` placeholder for embedding input but exclude the 'embedding' property in the result.

                 Generate targeted queries using relationships only when necessary. The embedding property should only be used in the logic and must not appear in the query results.

                 Strictly return only the Cypher queries with no embeddings. The returned result will be executed directly in the database.

                 {user_input}
                 """},
            ],
        )

        response = completion.choices[0].message.content

        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in parsing generating Cypher queries."},
                {"role": "user",
                 "content": f"""Use this input - {response} and parse and return only the cypher queries from the input, ensure that in the cypher query if it returns embeddings then remove the embeddings alone from the query"""},
            ],
            response_format=CypherQuery,
        )
        event = completion.choices[0].message.parsed
        cypher_queries = event.cypher_queries
        print("################################## CYPHER QUERIES ######################################")
        for query in cypher_queries:
            print(query)
        return cypher_queries
Copier après la connexion

 

ÉTAPE 2 - Remplir les intégrations dans la troisième requête

  • La 3ème requête utilise gds.similarity.cosine() nous convertissons donc la requête utilisateur en intégrations et la remplissons dans la 3ème requête
    def populate_embedding_in_query(self, user_input, cypher_queries):
        """Used to add embeddings of the user input in the 3rd query"""
        model = "text-embedding-3-small"
        user_input = user_input.replace("\n", " ")
        embeddings = self.client.embeddings.create(input=[user_input], model=model).data[0].embedding
        cypher_queries[2] = cypher_queries[2] % embeddings
        return cypher_queries
Copier après la connexion

 

ÉTAPE 3 - INTERROGATION DE LA BD

  • Interrogez la base de données à l'aide des requêtes de chiffrement préparées
    def execute_read_query(self, query):
        """Execute the cypher query"""
        results = []

        with GraphDatabase.driver(self.url, auth=self.auth) as driver:
            with driver.session() as session:
                try:
                    result = session.run(query)
                    # Collect the result from the read query
                    records = [record.data() for record in result]
                    if records:
                        results.append(records)
                except Exception as error:
                    print(f"Error in executing query")

        return results

    def fetch_data(self, cypher_queries):
        """Return the fetched data from DB post formatting"""
        results = None
        for idx in range(len(cypher_queries)):
            try:
                results = self.execute_read_query(cypher_queries[idx])
                if results:
                    if idx == len(cypher_queries) - 1:
                        results = results[0][:10]
                    break
            except Exception:
                pass
        return results
Copier après la connexion

 

ÉTAPE 4 - GÉNÉRATION AUGMENTÉE

  • À l'aide des données récupérées, appuyez sur GPT à l'aide d'une technique de génération augmentée pour générer une réponse à la requête de l'utilisateur à l'aide d'informations augmentées.
    def get_final_response(self, user_input, fetched_data):
        """Augumented generation using data fetched from DB"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are a chatbot for an ecommerce website, you help users to identify their desired products"},
                {"role": "user", "content": f"""User query - {user_input}
                Use the below metadata to answer my query
                {fetched_data}     
            """},
            ],
        )

        response = completion.choices[0].message.content
        return response
Copier après la connexion

 

CODE COMPLET

from openai import OpenAI
from pydantic import BaseModel
from typing import List
from neo4j import GraphDatabase


class CypherQuery(BaseModel):
    cypher_queries: List[str]


class GraphQueryEngine:
    def __init__(self):
        self.client = OpenAI(api_key="")
        self.url = "bolt://localhost:7687"
        self.auth = ("neo4j", "neo4j@123")

    def populate_embedding_in_query(self, user_input, cypher_queries):
        """Used to add embeddings of the user input in the 3rd query"""
        model = "text-embedding-3-small"
        user_input = user_input.replace("\n", " ")
        embeddings = self.client.embeddings.create(input=[user_input], model=model).data[0].embedding
        cypher_queries[2] = cypher_queries[2] % embeddings
        return cypher_queries

    def execute_read_query(self, query):
        """Execute the cypher query"""
        results = []

        with GraphDatabase.driver(self.url, auth=self.auth) as driver:
            with driver.session() as session:
                try:
                    result = session.run(query)
                    # Collect the result from the read query
                    records = [record.data() for record in result]
                    if records:
                        results.append(records)
                except Exception as error:
                    print(f"Error in executing query")

        return results

    def get_response(self, user_input):
        """Used to get cypher queries from user input"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in generating Cypher queries for a Neo4j database. Your task is to understand the input and generate only Cypher read queries. Do not return anything other than the Cypher queries, as the returned result will be executed directly in the database."},
                {"role": "user",
                 "content": f"""
                 Schema Information:
                 NODES: Product_type - Contains the distinct types of products such as headphones/mobiles/laptops/washing machines, Product_details - Contains products within a product_type for example apple, samsung within mobiles, DELL within laptops 
                 NODE PROPERTIES: In node Product_type there are name(name of the product type - String), embedding(embedding of the name), and in node Product_details there are name(name of the product - string), price(price of the product - integer), description(description of the product), product_release_date(when product was release on - date), available_stock(stock left - integer), review_rating(product review - float) 
                 DIRECTION OF RELATIONSHIPS: Node Product_type is connected to node Product_details using relationship CONTAINS

                 Based on the schema, generate three read-only Cypher queries related to Product_type (e.g., chairs, headphones, fridge) or Product_details (e.g., name, description) or combination of both. Ensure that product category uses Product_type and product name/ price 

                 Query 1: Use regular expressions (avoid 'contains') - Exclude the 'embedding' property from the result.
                 Query 2: Use `apoc.text.levenshteinSimilarity > 0.5` - Exclude the 'embedding' property from the result.
                 Query 3: Use `gds.similarity.cosine()` to reorder nodes based on similarity scores. The query must include a `%s` placeholder for embedding input but exclude the 'embedding' property in the result.

                 Generate targeted queries using relationships only when necessary. The embedding property should only be used in the logic and must not appear in the query results.

                 Strictly return only the Cypher queries with no embeddings. The returned result will be executed directly in the database.

                 {user_input}
                 """},
            ],
        )

        response = completion.choices[0].message.content

        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in parsing generating Cypher queries."},
                {"role": "user",
                 "content": f"""Use this input - {response} and parse and return only the cypher queries from the input, ensure that in the cypher query if it returns embeddings then remove the embeddings alone from the query"""},
            ],
            response_format=CypherQuery,
        )
        event = completion.choices[0].message.parsed
        cypher_queries = event.cypher_queries
        print("################################## CYPHER QUERIES ######################################")
        for query in cypher_queries:
            print(query)
        return cypher_queries

    def get_final_response(self, user_input, fetched_data):
        """Augumented generation using data fetched from DB"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are a chatbot for an ecommerce website, you help users to identify their desired products"},
                {"role": "user", "content": f"""User query - {user_input}
                Use the below metadata to answer my query
                {fetched_data}     
            """},
            ],
        )

        response = completion.choices[0].message.content
        return response

    def fetch_data(self, cypher_queries):
        """Return the fetched data from DB post formatting"""
        results = None
        for idx in range(len(cypher_queries)):
            try:
                results = self.execute_read_query(cypher_queries[idx])
                if results:
                    if idx == len(cypher_queries) - 1:
                        results = results[0][:10]
                    break
            except Exception:
                pass
        return results
Copier après la connexion

 

ESSAYONS-LE

user_input = input("Enter your question : ")
query_engine = GraphQueryEngine()
cypher_queries = query_engine.get_response(user_input)
cypher_queries = query_engine.populate_embedding_in_query(user_input, cypher_queries)
fetched_data = query_engine.fetch_data(cypher_queries)
response = query_engine.get_final_response(user_input, fetched_data)
Copier après la connexion

 

SORTIR

Building A Simple Graph Query Engine

Building A Simple Graph Query Engine

Dans le prochain blog, nous créerons une application FastAPI simple pour exposer cette configuration en tant qu'API.

 
J'espère que cela aide... !!!

 
LinkedIn - https://www.linkedin.com/in/praveenr2998/
Github - https://github.com/praveenr2998/Creating-Lightweight-RAG-Systems-With-Graphs/blob/main/fastapi_app/query_engine.py

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:dev.to
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal