Le langage de requête structuré ou SQL est un langage de base de données standard utilisé pour créer, maintenir, détruire, mettre à jour et récupérer des données à partir de bases de données relationnelles telles que MySQL, Oracle, SQL Server, PostgreSQL, etc.
Il s'agit d'un cadre conceptuel utilisé pour décrire la structure des données au sein d'une base de données. Il a été conçu pour représenter les entités du monde réel et les relations entre elles de manière plus abstraite. C'est similaire à la programmation orientée objet pour le langage de programmation.
Entités : Il s'agit d'objets ou de « choses » dans le monde réel qui ont une existence distincte, comme un client, un produit ou une commande.
Relations : Celles-ci définissent la manière dont les entités sont liées les unes aux autres. Par exemple, une entité « Client » peut avoir une relation avec une entité « Commande »
Commandes :
create database <database_name>;
show databases;
use <database_name>
DESCRIBE table_name;
Langage utilisé pour effectuer des requêtes sur les données. Cette commande est utilisée pour récupérer des données de la base de données.
Commandes :
1) Sélectionnez :
select * from table_name; select column1,column2 from table_name; select * from table_name where column1 = "value";
Langage utilisé pour définir le schéma de la base de données. Cette commande est utilisée pour créer, modifier et supprimer une base de données mais pas des données.
Commandes
1) Créer :
create table table_name( column_name data_type(size) constraint, column_name data_type(size) constraint column_name data_type(size) constraint );
2) Déposez :
Cette commande supprime complètement la table/base de données.
drop table table_name; drop database database_name;
3) Tronquer :
Cette commande supprime uniquement les données.
truncate table table_name;
4) Modifier :
Cette commande peut ajouter, supprimer ou mettre à jour des colonnes du tableau.
Ajouter
alter table table_name add column_name datatype;
Modifier
alter table table_name modify column column_name datatype; --ALTER TABLE employees --MODIFY COLUMN salary DECIMAL(10,2);
Laisser tomber
alter table table_name drop column_name datatype;
Langage utilisé pour manipuler les données présentes dans la base de données.
1) Insérer :
Cette commande est utilisée pour insérer uniquement de nouvelles valeurs.
insert into table_name values (val1,val2,val3,val4); //4 columns
2) Mise à jour :
update table_name set col1=val1, col2=val2 where col3 = val3;
3) Supprimer :
delete from table_name where col1=val1;
GRANT : autorise les utilisateurs spécifiés à effectuer des tâches spécifiées.
REVOKE : annuler les autorisations précédemment accordées ou refusées.
Il est utilisé pour gérer les transactions dans une base de données. Il gère les modifications effectuées par les commandes DML.
1) S'engager
Il permet de sauvegarder toutes les modifications apportées lors de la transaction en cours dans la base de données
BEGIN TRANSACTION; UPDATE employees SET salary = salary * 1.1 WHERE department = 'Sales'; COMMIT;
2) Restauration
Il permet d'annuler toutes les modifications apportées lors de la transaction en cours
BEGIN TRANSACTION; UPDATE employees SET salary = salary * 1.1 WHERE department = 'Sales'; ROLLBACK;
3) Point de sauvegarde
begin transaction; update customers set first_name= 'one' WHERE customer_id=4; SAVEPOINT one; update customers set first_name= 'two' WHERE customer_id=4; ROLLBACK TO SAVEPOINT one; COMMIT;
Cette commande est utilisée pour filtrer les résultats en fonction des fonctions d'agrégation." Nous ne pouvons pas utiliser de fonctions d'agrégation dans l'instruction WHERE, nous pouvons donc les utiliser dans cette commande"
Remarque : Ceci peut être utilisé lorsque nous devons comparer en utilisant une colonne composée alors que la commande WHERE peut être utilisée pour comparer en utilisant une colonne existante
select Department, sum(Salary) as Salary from employee group by department having sum(Salary) >= 50000;
Cette commande est utilisée lorsqu'ils demandent d'exclure deux ou plusieurs éléments particuliers
select * from table_name where colname not in ('Germany', 'France', 'UK');
Cette commande permet de récupérer uniquement des données uniques en fonction du champ choisi.
Select distinct field from table;
SELECT COUNT(DISTINCT salesman_id) FROM orders;
Il s'agit d'une sous-requête (une requête imbriquée dans une autre requête) qui référence les colonnes de la requête externe
SELECT EmployeeName, Salary FROM Employees e1 WHERE Salary > ( SELECT AVG(Salary) FROM Employees e2 WHERE e1.DepartmentID = e2.DepartmentID );
La normalisation est une technique de conception de base de données utilisée pour organiser les tables de manière à réduire la redondance et à améliorer l'intégrité des données. L'objectif principal de la normalisation est de diviser une grande table en éléments plus petits et plus gérables tout en préservant les relations entre les données
Première Forme Normale (1NF)
Toutes les valeurs dans les colonnes sont atomiques (indivisibles).
Chaque colonne ne contient qu'un seul type de données.
EmployeeID | EmployeeName | Department | PhoneNumbers ---------------------------------------------------- 1 | Alice | HR | 123456, 789012 2 | Bob | IT | 345678
Après 1NF :
EmployeeID | EmployeeName | Department | PhoneNumber ---------------------------------------------------- 1 | Alice | HR | 123456 1 | Alice | HR | 789012 2 | Bob | IT | 345678
Deuxième Forme Normale (2NF)
Il est en 1NF.
Tous les attributs non clés dépendent entièrement fonctionnellement de la clé primaire (pas de dépendances partielles).
EmployeeID | EmployeeName | DepartmentID | DepartmentName --------------------------------------------------------- 1 | Alice | 1 | HR 2 | Bob | 2 | IT
Après 2NF :
EmployeeID | EmployeeName | DepartmentID --------------------------------------- 1 | Alice | 1 2 | Bob | 2 DepartmentID | DepartmentName ------------------------------ 1 | HR 2 | IT
Troisième Forme Normale (3NF)
Il est en 2NF.
Tous les attributs dépendent fonctionnellement uniquement de la clé primaire (pas de dépendances transitives).
EmployeeID | EmployeeN | DepartmentID | Department | DepartmentLocation -------------------------------------------------------------------------- 1 | Alice | 1 | HR | New York 2 | Bob | 2 | IT | Los Angeles
Après 3NF :
EmployeeID | EmployeeN | DepartmentID ---------------------------------------- 1 | Alice | 1 2 | Bob | 2 DepartmentID | DepartmentName | DepartmentLocation ----------------------------------------------- 1 | HR | New York 2 | IT | Los Angeles
Cette commande est utilisée pour combiner les résultats de deux ou plusieurs instructions SELECT
Select * from table_name WHERE (subject = 'Physics' AND year = 1970) UNION (SELECT * FROM nobel_win WHERE (subject = 'Economics' AND year = 1971));
Cette commande est utilisée pour limiter la quantité de données extraites de la requête.
select Department, sum(Salary) as Salary from employee limit 2;
Cette commande permet de sauter le nombre de lignes avant de renvoyer le résultat.
select Department, sum(Salary) as Salary from employee limit 2 offset 2;
This command is used to sort the data based on the field in ascending or descending order.
Data:
create table employees ( id int primary key, first_name varchar(50), last_name varchar(50), salary decimal(10, 2), department varchar(50) ); insert into employees (first_name, last_name, salary, department) values ('John', 'Doe', 50000.00, 'Sales'), ('Jane', 'Smith', 60000.00, 'Marketing'), ('Jim', 'Brown', 60000.00, 'Sales'), ('Alice', 'Johnson', 70000.00, 'Marketing');
select * from employees order by department; select * from employees order by salary desc
This command is used to test for empty values
select * from tablename where colname IS NULL;
This command is used to arrange similar data into groups using a function.
select department, avg(salary) AS avg_salary from employees group by department;
This command is used to search a particular pattern in a column.
SELECT * FROM employees WHERE first_name LIKE 'a%';
SELECT * FROM salesman WHERE name BETWEEN 'A' AND 'L';
Characters used with the LIKE operator to perform pattern matching in string searches.
% - Percent
_ - Underscore
SELECT 'It\'s a beautiful day';
SELECT * FROM table_name WHERE column_name LIKE '%50!%%' ESCAPE '!';
The CASE statement in SQL is used to add conditional logic to queries. It allows you to return different values based on different conditions.
SELECT first_name, last_name, salary, CASE salary WHEN 50000 THEN 'Low' WHEN 60000 THEN 'Medium' WHEN 70000 THEN 'High' ELSE 'Unknown' END AS salary_category FROM employees;
1) Print something
Select "message";
select ' For', ord_date, ',there are', COUNT(ord_no) group by colname;
2) Print numbers in each column
Select 1,2,3;
3) Print some calculation
Select 6x2-1;
4) Print wildcard characters
select colname1,'%',colname2 from tablename;
5) Connect two colnames
select first_name || ' ' || last_name AS colname from employees
6) Use the nth field
select * from orders group by colname order by 2 desc;
1) Not Null:
This constraint is used to tell the field that it cannot have null value in a column.
create table employees( id int(6) not null );
2) Unique:
This constraint is used to tell the field that it cannot have duplicate value. It can accept NULL values and multiple unique constraints are allowed per table.
create table employees ( id int primary key, first_name varchar(50) unique );
3) Primary Key:
This constraint is used to tell the field that uniquely identifies in the table. It cannot accept NULL values and it can have only one primary key per table.
create table employees ( id int primary key );
4) Foreign Key:
This constraint is used to refer the unique row of another table.
create table employees ( id int primary key foreign key (id) references owner(id) );
5) Check:
This constraint is used to check a particular condition for data to be stored.
create table employees ( id int primary key, age int check (age >= 18) );
6) Default:
This constraint is used to provide default value for a field.
create table employees ( id int primary key, age int default 28 );
1)Count:
select count(*) as members from employees;
2)Sum:
select sum(salary) as total_amount FROM employees;
3)Average:
select avg(salary) as average_amount FROM employees;
4)Maximum:
select max(salary) as highest_amount FROM employees;
5)Minimum:
select min(salary) as lowest_amount FROM employees;
6)Round:
select round(123.4567, -2) as rounded_value;
1) datediff
select a.id from weather a join weather b on datediff(a.recordDate,b.recordDate)=1 where a.temperature > b.temperature;
2) date_add
select date_add("2017-06-15", interval 10 day); SECOND MINUTE HOUR DAY WEEK MONTH QUARTER YEAR
3) date_sub
SELECT DATE_SUB("2017-06-15", INTERVAL 10 DAY);
This is used to combine two tables based on one common column.
It returns only the rows where there is a match between both tables.
Data
create table employees( employee_id int(2) primary key, first_name varchar(30), last_name varchar(30), department_id int(2) ); create table department( department_id int(2) primary key, department_name varchar(30) ); insert into employees values (1,"John","Dow",10); insert into employees values (2,"Jane","Smith",20); insert into employees values (3,"Jim","Brown",10); insert into employees values (4,"Alice","Johnson",30); insert into department values (10,"Sales"); insert into department values (20,"Marketing"); insert into department values (30,"IT");
select e.employee_id,e.first_name,e.last_name,d.department_name from employees e inner join department d on e.department_id=d.department_id;
This type of join returns all rows from the left table along with the matching rows from the right table. Note: If there are no matching rows in the right side, it return null.
select e.employee_id, e.first_name, e.last_name, d.department_name from employees e left join departments d on e.department_id = d.department_id;
This type of join returns all rows from the right table along with the matching rows from the left table. Note: If there are no matching rows in the left side, it returns null.
SELECT e.employee_id, e.first_name, e.last_name, d.department_name FROM employees e RIGHT JOIN departments d ON e.department_id = d.department_id;
This type of join is used to combine with itself especially for creation of new column of same data.
SELECT e.employee_id AS employee_id, e.first_name AS employee_first_name, e.last_name AS employee_last_name, m.first_name AS manager_first_name, m.last_name AS manager_last_name FROM employees e LEFT JOIN employees m ON e.manager_id = m.employee_id;
This type of join is used to combine the result of both left and right join.
SELECT e.employee_id, e.first_name, e.last_name, d.department_name FROM employees e FULL JOIN departments d ON e.department_id = d.department_id;
This type of join is used to generate a Cartesian product of two tables.
SELECT e.name, d.department_name FROM Employees e CROSS JOIN Departments d;
A nested query, also known as a subquery, is a query within another SQL query. The nested query is executed first, and its result is used by the outer query.
Subqueries can be used in various parts of a SQL statement, including the SELECT clause, FROM clause, WHERE clause, and HAVING clause.
1) Nested Query in SELECT Clause:
SELECT e.first_name, e.last_name, (SELECT d.department_name FROM departments d WHERE d.id = e.department_id) AS department_name FROM employees e;
2) Nested Query in WHERE Clause:
SELECT first_name, last_name, salary FROM employees WHERE salary > (SELECT AVG(salary) FROM employees);
SELECT pro_name, pro_price FROM item_mast WHERE pro_price = (SELECT MIN(pro_price) FROM item_mast);
3) Nested Query in FROM Clause:
SELECT department_id, AVG(salary) AS avg_salary FROM employees GROUP BY department_id;
4) Nested Query with EXISTS:
SELECT customer_name FROM customers c WHERE EXISTS ( SELECT 1 FROM orders o WHERE o.customer_id = c.customer_id );
This command is used to test the existence of a particular record. Note: When using EXISTS query, actual data returned by subquery does not matter.
SELECT customer_name FROM customers c WHERE EXISTS ( SELECT 1 FROM orders o WHERE o.customer_id = c.customer_id );
SELECT customer_name FROM customers c WHERE NOT EXISTS ( SELECT 1 FROM orders o WHERE o.customer_id = c.customer_id );
The COALESCE function in SQL is used to return the first non-null expression among its arguments. It is particularly useful for handling NULL values and providing default values when dealing with potentially missing or undefined data.
CREATE TABLE employees ( first_name VARCHAR(50), middle_name VARCHAR(50), last_name VARCHAR(50) ); INSERT INTO employees (first_name, middle_name, last_name) VALUES ('John', NULL, 'Doe'), ('Jane', 'Marie', 'Smith'), ('Emily', NULL, 'Johnson'); SELECT first_name, COALESCE(middle_name, 'No Middle Name') AS middle_name, last_name FROM employees;
It is Oracle's procedural extension to SQL. If multiple SELECT statements are issued, the network traffic increases significantly very fast. For example, four SELECT statements cause eight network trips. If these statements are part of the PL/SQL block, they are sent to the server as a single unit.
They are the fundamental units of execution and organization.
1) Named block
Named blocks are used when creating subroutines. These subroutines are procedures, functions, and packages. The subroutines can be stored in the database and referenced by their names later on.
Ex.
CREATE OR REPLACE PROCEDURE procedure_name (param1 IN datatype, param2 OUT datatype) AS BEGIN -- Executable statements END procedure_name;
2) Anonymous
They are blocks do not have names. As a result, they cannot be stored in the database and referenced later.
DECLARE -- Declarations (optional) BEGIN -- Executable statements EXCEPTION -- Exception handling (optional) END;
Declaration
It contains identifiers such as variables, constants, cursors etc
Ex.
declare v_first_name varchar2(35) ; v_last_name varchar2(35) ; v_counter number := 0 ; v_lname students.lname%TYPE; // takes field datatype from column
DECLARE v_student students%rowtype; BEGIN select * into v_student from students where sid='123456'; DBMS_OUTPUT.PUT_LINE(v_student.lname); DBMS_OUTPUT.PUT_LINE(v_student.major); DBMS_OUTPUT.PUT_LINE(v_student.gpa); END;
Execution
It contains executable statements that allow you to manipulate the variables.
declare v_regno number; v_variable number:=0; begin select regno into v_regno from student where regno=1; dbms_output.put_line(v_regno || ' '|| v_variable); end
DECLARE v_inv_value number(8,2); v_price number(8,2); v_quantity number(8,0) := 400; BEGIN v_price := :p_price; v_inv_value := v_price * v_quantity; dbms_output.put_line(v_inv_value); END;
IF rating > 7 THEN v_message := 'You are great'; ELSIF rating >= 5 THEN v_message := 'Not bad'; ELSE v_message := 'Pretty bad'; END IF;
Simple Loop
declare begin for i in 1..5 loop dbms_output.put_line('Value of i: ' || i); end loop; end;
While Loop
declare counter number := 1; begin while counter <= 5 LOOP dbms_output.put_line('Value of counter: ' || counter); counter := counter + 1; end loop; end;
Loop with Exit
declare counter number := 1; begin loop exit when counter > 5; dbms_output.put_line('Value of counter: ' || counter); counter := counter + 1; end loop; end;
A series of statements accepting and/or returning
zero variables.
--creating a procedure create or replace procedure proc (var in number) as begin dbms_output.put_line(var); end --calling of procedure begin proc(3); end
A series of statements accepting zero or more variables that returns one value.
create or replace function func(var in number) return number is res number; begin select regno into res from student where regno=var; return res; end --function calling declare var number; begin var :=func(1); dbms_output.put_line(var); end
All types of I/O
p_name IN VARCHAR2 p_lname OUT VARCHAR2 p_salary IN OUT NUMBER
DML (Data Manipulation Language) triggers are fired in response to INSERT, UPDATE, or DELETE operations on a table or view.
BEFORE Triggers:
Execute before the DML operation is performed.
AFTER Triggers:
Execute after the DML operation is performed.
INSTEAD OF Triggers:
Execute in place of the DML operation, typically used for views.
Note: :new represents the cid of the new row in the orders table that was just inserted.
create or replace trigger t_name after update on student for each row begin dbms_output.put_line(:NEW.regno); end --after updation update student set name='name' where regno=1;
SELECT id,name,gender, ROW_NUMBER() OVER( PARTITION BY name order by gender ) AS row_number FROM student; SELECT employee_id, department_id, salary, RANK() OVER( PARTITION BY department_id ORDER BY salary DESC ) AS salary_rank FROM employees;
Atomicity:
All operations within a transaction are treated as a single unit.
Ex. Consider a bank transfer where money is being transferred from one account to another. Atomicity ensures that if the debit from one account succeeds, the credit to the other account will also succeed. If either operation fails, the entire transaction is rolled back to maintain consistency.
Cohérence :
La cohérence garantit que la base de données reste dans un état cohérent avant et après la transaction.
Ex. Si une opération de transfert réduit le solde d'un compte, elle devrait également augmenter le solde du compte destinataire. Cela maintient l'équilibre global du système.
Isolement :
L'isolation garantit que l'exécution simultanée des transactions aboutit à un état du système qui serait obtenu si les transactions étaient exécutées en série, c'est-à-dire les unes après les autres.
Ex. Considérons deux transactions T1 et T2. Si T1 transfère de l'argent du compte A vers le compte B et que T2 vérifie le solde du compte A, l'isolation garantit que T2 verra le solde du compte A soit avant le transfert (si T1 ne s'est pas encore engagé), soit après le transfert (si T1 s'est engagé), mais pas un état intermédiaire.
Durabilité :
La durabilité garantit qu'une fois qu'une transaction est validée, ses effets sont permanents et survivent aux pannes du système. Même si le système plante ou redémarre, les modifications apportées par la transaction ne sont pas perdues.
1) Type de données numérique
int
decimal(p,q) - p est la taille, q est la précision
2) Type de données chaîne
char(value) - max(8000) && immuable
varchar(valeur) - max(8000)
texte - plus grande taille
3) Type de données Date
date
heure
dateheure
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!