


Principes SOLID utilisant des analogies amusantes avec l'exemple de véhicule
SOLID est l'acronyme d'un groupe de cinq bons principes (règles) en programmation informatique. SOLID permet aux programmeurs d'écrire du code plus facile à comprendre et à modifier ultérieurement. SOLID est souvent utilisé avec des systèmes qui utilisent une conception orientée objet.
Expliquons les principes SOLID à l'aide de l'exemple du véhicule. Imaginez que nous concevons un système pour gérer différents types de véhicules, comme les voitures et les voitures électriques, pour un service de transport.
S - Principe de responsabilité unique (SRP)
Exemple de véhicule : Imaginez que vous avez une voiture. Il est responsable de la conduite, mais il ne devrait pas être responsable de son propre entretien (comme les vidanges d'huile ou la permutation des pneus). Au lieu de cela, un mécanicien distinct en est responsable.
Explication : Dans notre code, la classe Vehicle ne doit gérer que les éléments liés au véhicule lui-même, comme stocker sa marque et son modèle. Si nous devons gérer la maintenance, nous créons une classe Maintenance distincte pour cela. De cette façon, chaque classe a un travail ou une responsabilité, ce qui rend le code plus facile à gérer.
class Vehicle def initialize(make, model) @make = make @model = model end end class Maintenance def initialize(vehicle) @vehicle = vehicle end def perform_maintenance puts "Performing maintenance on #{@vehicle.make} #{@vehicle.model}" end end
O - Principe ouvert/fermé (OCP)
Exemple de véhicule : Supposons que vous ayez une voiture de base et que vous souhaitiez maintenant ajouter une voiture électrique à votre système. Vous ne devriez pas avoir à modifier la classe de voiture existante pour ajouter des fonctionnalités pour les voitures électriques. Au lieu de cela, vous pouvez étendre les fonctionnalités existantes en créant une nouvelle classe pour les voitures électriques.
Explication : La classe Vehicle est ouverte à l'extension (vous pouvez créer de nouveaux types de véhicules comme ElectricVehicle), mais elle est fermée à la modification (vous n'avez pas besoin de changer la classe Vehicle elle-même pour ajouter de nouveaux types).
class Vehicle def initialize(make, model) @make = make @model = model end def description "#{@make} #{@model}" end end class ElectricVehicle < Vehicle def initialize(make, model, battery_range) super(make, model) @battery_range = battery_range end def description "#{super} with #{@battery_range} miles battery range" end end
Principe de substitution L - Liskov (LSP)
Exemple de véhicule : Imaginez que vous disposez d'une flotte de véhicules et que vous pouvez remplacer n'importe quelle voiture ordinaire par une voiture électrique sans aucun problème. Les deux devraient être capables de remplir leur fonction de base - conduire - sans casser le système.
Explication : Toute sous-classe (comme ElectricVehicle) devrait pouvoir remplacer sa classe parent (Vehicle) sans altérer le comportement du programme. Cela garantit que notre code peut gérer différents types de véhicules de la même manière.
class Vehicle def initialize(make, model) @make = make @model = model end def drive puts "Driving the #{@make} #{@model}" end end class ElectricVehicle < Vehicle def drive puts "Driving the electric #{@make} #{@model} quietly" end end def test_drive(vehicle) vehicle.drive end car = Vehicle.new("Toyota", "Corolla") ev = ElectricVehicle.new("Tesla", "Model 3") test_drive(car) # Driving the Toyota Corolla test_drive(ev) # Driving the electric Tesla Model 3 quietly
I - Principe de ségrégation d'interface (ISP)
Exemple de véhicule : Imaginez que vous ayez différents types de véhicules : certains peuvent être chargés (comme les voitures électriques), et d'autres ne peuvent être conduits (comme les voitures à essence). Vous ne voulez pas qu'une voiture à essence soit confrontée à des méthodes liées à la recharge.
Explication : Les classes ne doivent implémenter que les interfaces (ou comportements) dont elles ont besoin. Par exemple, un véhicule électrique peut implémenter à la fois des interfaces pilotables et facturables, tandis qu'un véhicule ordinaire n'implémente que pilotable.
module Drivable def drive raise NotImplementedError, "This #{self.class} cannot drive" end end module Chargeable def charge raise NotImplementedError, "This #{self.class} cannot be charged" end end class Vehicle include Drivable def initialize(make, model) @make = make @model = model end def drive puts "Driving the #{@make} #{@model}" end end class ElectricVehicle < Vehicle include Chargeable def initialize(make, model, battery_range) super(make, model) @battery_range = battery_range end def drive puts "Driving the electric #{@make} #{@model} quietly" end def charge puts "Charging the #{@make} #{@model}" end end
D - Principe d'inversion de dépendance (DIP)
Exemple de véhicule : Imaginez qu'une voiture puisse avoir différents types de moteurs : un moteur à essence ou un moteur électrique. Au lieu de dépendre directement d'un type de moteur spécifique, la voiture devrait dépendre d'une interface moteur plus générale afin de pouvoir utiliser n'importe quel type de moteur.
Explication : Les modules de haut niveau (comme le Véhicule) ne doivent pas dépendre de modules de bas niveau (comme GasEngine ou ElectricEngine). Les deux devraient dépendre d’abstractions (comme une interface Engine). Cela rend le système plus flexible et plus facile à modifier.
class Engine def start raise NotImplementedError, "This #{self.class} cannot start" end end class GasEngine < Engine def start puts "Starting gas engine" end end class ElectricEngine < Engine def start puts "Starting electric engine" end end class Vehicle def initialize(engine) @engine = engine end def start @engine.start end end gas_engine = GasEngine.new electric_engine = ElectricEngine.new gas_car = Vehicle.new(gas_engine) electric_car = Vehicle.new(electric_engine) gas_car.start # Starting gas engine electric_car.start # Starting electric engine
En suivant les principes SOLID dans cet exemple de véhicule, nous pouvons construire un système facile à entretenir, à étendre et à adapter aux nouvelles exigences.
LinkedIn : https://www.linkedin.com/in/anandsoni11/
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Différents moteurs JavaScript ont des effets différents lors de l'analyse et de l'exécution du code JavaScript, car les principes d'implémentation et les stratégies d'optimisation de chaque moteur diffèrent. 1. Analyse lexicale: convertir le code source en unité lexicale. 2. Analyse de la grammaire: générer un arbre de syntaxe abstrait. 3. Optimisation et compilation: générer du code machine via le compilateur JIT. 4. Exécuter: Exécutez le code machine. Le moteur V8 optimise grâce à une compilation instantanée et à une classe cachée, SpiderMonkey utilise un système d'inférence de type, résultant en différentes performances de performances sur le même code.

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

Le passage de C / C à JavaScript nécessite de s'adapter à la frappe dynamique, à la collecte des ordures et à la programmation asynchrone. 1) C / C est un langage dactylographié statiquement qui nécessite une gestion manuelle de la mémoire, tandis que JavaScript est dynamiquement typé et que la collecte des déchets est automatiquement traitée. 2) C / C doit être compilé en code machine, tandis que JavaScript est une langue interprétée. 3) JavaScript introduit des concepts tels que les fermetures, les chaînes de prototypes et la promesse, ce qui améliore la flexibilité et les capacités de programmation asynchrones.

Les principales utilisations de JavaScript dans le développement Web incluent l'interaction client, la vérification du formulaire et la communication asynchrone. 1) Mise à jour du contenu dynamique et interaction utilisateur via les opérations DOM; 2) La vérification du client est effectuée avant que l'utilisateur ne soumette les données pour améliorer l'expérience utilisateur; 3) La communication de rafraîchissement avec le serveur est réalisée via la technologie AJAX.

L'application de JavaScript dans le monde réel comprend un développement frontal et back-end. 1) Afficher les applications frontales en créant une application de liste TODO, impliquant les opérations DOM et le traitement des événements. 2) Construisez RestulAPI via Node.js et Express pour démontrer les applications back-end.

Comprendre le fonctionnement du moteur JavaScript en interne est important pour les développeurs car il aide à écrire du code plus efficace et à comprendre les goulots d'étranglement des performances et les stratégies d'optimisation. 1) Le flux de travail du moteur comprend trois étapes: analyse, compilation et exécution; 2) Pendant le processus d'exécution, le moteur effectuera une optimisation dynamique, comme le cache en ligne et les classes cachées; 3) Les meilleures pratiques comprennent l'évitement des variables globales, l'optimisation des boucles, l'utilisation de const et de locations et d'éviter une utilisation excessive des fermetures.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Les choix de Python et JavaScript dans les environnements de développement sont importants. 1) L'environnement de développement de Python comprend Pycharm, Jupyternotebook et Anaconda, qui conviennent à la science des données et au prototypage rapide. 2) L'environnement de développement de JavaScript comprend Node.js, VScode et WebPack, qui conviennent au développement frontal et back-end. Le choix des bons outils en fonction des besoins du projet peut améliorer l'efficacité du développement et le taux de réussite du projet.
