


Comment créer un chatbot de base à l'aide de TensorFlow et JavaScript
Nous rencontrons tous des chatbots lorsque nous visitons divers sites, tandis que certains d'entre eux fonctionnent derrière une interaction humaine réelle, d'autres sont alimentés par l'IA.
Dans cet article, nous expliquerons la création d'un chatbot simple alimenté par l'IA à l'aide de TensorFlow et de JavaScript. Le chatbot reconnaîtra les commandes de l'utilisateur et répondra avec des réponses prédéfinies.
Guide étape par étape
Montage de notre projet
Tout d'abord, nous créons un nouveau répertoire pour notre projet et l'initialisons avec npm, assurez-vous que Node.js est installé sur votre système avant de commencer cette étape.
mkdir chatbot cd chatbot npm init -y
Installer les packages nécessaires
Nous utiliserions les packages npm suivants pour notre projet simple :
- tensorflow/tfjs : bibliothèque TensorFlow.js pour l'apprentissage automatique.
- tensorflow-models/universal-sentence-encoder : modèle d'encodeur de phrases universel pré-entraîné pour la reconnaissance d'intention.
npm install @tensorflow/tfjs @tensorflow-models/universal sentence-encoder
-
Créer des intentions
Créez un fichier nommé intents.js pour stocker les intentions/commandes. Il s'agit de catégories d'entrées utilisateur que le chatbot reconnaîtra (par exemple, les salutations, les demandes de produits, l'état de la commande).
// intents.js const intents = { greeting: ["hello", "hi", "hey", "good morning", "good evening", "howdy"], goodbye: ["bye", "goodbye", "see you later", "farewell", "catch you later"], thanks: ["thank you", "thanks", "much appreciated", "thank you very much"], product_inquiry: ["tell me about your products", "what do you sell?", "product information", "what can I buy?", "show me your products"], order_status: ["where is my order?", "order status", "track my order", "order tracking", "order update"], shipping_info: ["shipping information", "how do you ship?", "shipping methods", "delivery options", "how long does shipping take?"], return_policy: ["return policy", "how to return?", "return process", "can I return?", "returns"], payment_methods: ["payment options", "how can I pay?", "payment methods", "available payments"], support_contact: ["contact support", "how to contact support?", "customer support contact", "support info", "customer service contact"], business_hours: ["business hours", "working hours", "when are you open?", "opening hours", "store hours"] }; module.exports = { intents }
Copier après la connexion -
Créer des réponses
Créez un autre fichier nommé Responses.js pour stocker les réponses prédéfinies. Ce sont les réponses prédéfinies que le chatbot donnera en fonction de l'intention reconnue.
// responses.js const responses = { greeting: "Hello! How can I help you today?", goodbye: "Goodbye! Have a great day!", thanks: "You're welcome! If you have any other questions, feel free to ask.", product_inquiry: "We offer a variety of products including electronics, books, clothing, and more. How can I assist you further?", order_status: "Please provide your order ID, and I will check the status for you.", shipping_info: "We offer various shipping methods including standard, express, and next-day delivery. Shipping times depend on the method chosen and your location.", return_policy: "Our return policy allows you to return products within 30 days of purchase. Please visit our returns page for detailed instructions.", payment_methods: "We accept multiple payment methods including credit/debit cards, PayPal, and bank transfers. Please choose the method that suits you best at checkout.", support_contact: "You can contact our support team via email at support@example.com or call us at 1-800-123-4567.", business_hours: "Our business hours are Monday to Friday, 9 AM to 5 PM. We are closed on weekends and public holidays." }; module.exports = { responses };
Copier après la connexion -
Chargement de TensorFlow et de l'encodeur de phrases
Créez un fichier de script principal nommé chatbot.js et chargez les bibliothèques et modèles nécessaires, nous chargeons le modèle d'encodeur de phrases universel de manière asynchrone et démarrons le chatbot une fois le modèle chargé.
// chatbot.js const tf = require('@tensorflow/tfjs'); const use = require('@tensorflow-models/universal-sentence-encoder'); const { intents } = require('./intents'); const { responses } = require('./responses'); const readline = require('readline'); // Load the Universal Sentence Encoder model let model; use.load().then((loadedModel) => { model = loadedModel; console.log("Model loaded"); startChatbot(); });
Copier après la connexion -
Mise en œuvre de la reconnaissance d'intention
Ajoutez une fonction pour reconnaître l'intention de la saisie de l'utilisateur, nous intégrons la saisie de l'utilisateur dans un vecteur de grande dimension à l'aide de l'encodeur universel, puis suivons le score de similarité le plus élevé en fonction de l'intention.
async function recognizeIntent(userInput) { const userInputEmb = await model.embed([userInput]); let maxScore = -1; let recognizedIntent = null; for (const [intent, examples] of Object.entries(intents)) { // Embedding the example phrases for each intent & Calculating similarity scores between the user input embedding and the example embeddings const examplesEmb = await model.embed(examples); const scores = await tf.matMul(userInputEmb, examplesEmb, false, true).data(); const maxExampleScore = Math.max(...scores); if (maxExampleScore > maxScore) { maxScore = maxExampleScore; recognizedIntent = intent; } } return recognizedIntent; }
Copier après la connexion -
Générer des réponses
Ajoutez une fonction pour générer des réponses basées sur l'intention reconnue :
async function generateResponse(userInput) { const intent = await recognizeIntent(userInput); if (intent && responses[intent]) { return responses[intent]; } else { return "I'm sorry, I don't understand that. Can you please rephrase?"; } }
Copier après la connexion -
Mise en œuvre de l'interaction Chatbot
Enfin, implémentez la boucle d'interaction avec le chatbot en configurant l'interface pour lire les entrées de l'utilisateur à partir de la ligne de commande, en invitant l'utilisateur à saisir et en générant des réponses en conséquence :
function startChatbot() { const rl = readline.createInterface({ input: process.stdin, output: process.stdout }); console.log("Welcome to the customer service chatbot! Type 'quit' to exit."); rl.prompt(); rl.on('line', async (line) => { const userInput = line.trim(); if (userInput.toLowerCase() === 'quit') { console.log("Chatbot: Goodbye!"); rl.close(); return; } const response = await generateResponse(userInput); console.log(`Chatbot: ${response}`); rl.prompt(); }); }
Copier après la connexionVoici le code complété pour chatbot.js :
// chatbot.js const tf = require('@tensorflow/tfjs'); const use = require('@tensorflow-models/universal-sentence-encoder'); const { intents } = require('./intents'); const { responses } = require('./responses'); const readline = require('readline'); // Load the Universal Sentence Encoder model let model; use.load().then((loadedModel) => { model = loadedModel; console.log("Model loaded"); startChatbot(); }); async function recognizeIntent(userInput) { const userInputEmb = await model.embed([userInput]); let maxScore = -1; let recognizedIntent = null; for (const [intent, examples] of Object.entries(intents)) { const examplesEmb = await model.embed(examples); const scores = await tf.matMul(userInputEmb, examplesEmb, false, true).data(); const maxExampleScore = Math.max(...scores); if (maxExampleScore > maxScore) { maxScore = maxExampleScore; recognizedIntent = intent; } } return recognizedIntent; } async function generateResponse(userInput) { const intent = await recognizeIntent(userInput); if (intent && responses[intent]) { return responses[intent]; } else { return "I'm sorry, I don't understand that. Can you please rephrase?"; } } function startChatbot() { const rl = readline.createInterface({ input: process.stdin, output: process.stdout }); console.log("Welcome to the customer service chatbot! Type 'quit' to exit."); rl.prompt(); rl.on('line', async (line) => { const userInput = line.trim(); if (userInput.toLowerCase() === 'quit') { console.log("Chatbot: Goodbye!"); rl.close(); return; } const response = await generateResponse(userInput); console.log(`Chatbot: ${response}`); rl.prompt(); }); }
Copier après la connexion -
Pour exécuter le chatbot, exécutez le fichier chatbot.js :
node chatbot.js
Copier après la connexion
Voila ! Le résultat de notre commande devrait faire fonctionner le chatbot :
Conclusion
Dans cet article, nous avons créé un chatbot de service client simple à l'aide de TensorFlow et de JavaScript. Bien que cette implémentation soit basique, elle constitue une base solide pour créer des chatbots plus sophistiqués. Vous pouvez étendre ce projet en intégrant des API à l'aide d'AXIOS, en ajoutant plus d'intentions et de réponses ou en le déployant sur une plate-forme Web.
Bon codage !
?? En savoir plus sur moi
?? Connectez-vous sur LinkedIn
?? Abonnez-vous à mon blog
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Des questions et des solutions fréquemment posées pour l'impression de billets thermiques frontaux pour le développement frontal, l'impression de billets est une exigence commune. Cependant, de nombreux développeurs mettent en œuvre ...

JavaScript est la pierre angulaire du développement Web moderne, et ses principales fonctions incluent la programmation axée sur les événements, la génération de contenu dynamique et la programmation asynchrone. 1) La programmation axée sur les événements permet aux pages Web de changer dynamiquement en fonction des opérations utilisateur. 2) La génération de contenu dynamique permet d'ajuster le contenu de la page en fonction des conditions. 3) La programmation asynchrone garantit que l'interface utilisateur n'est pas bloquée. JavaScript est largement utilisé dans l'interaction Web, les applications à une page et le développement côté serveur, améliorant considérablement la flexibilité de l'expérience utilisateur et du développement multiplateforme.

Il n'y a pas de salaire absolu pour les développeurs Python et JavaScript, selon les compétences et les besoins de l'industrie. 1. Python peut être davantage payé en science des données et en apprentissage automatique. 2. JavaScript a une grande demande dans le développement frontal et complet, et son salaire est également considérable. 3. Les facteurs d'influence comprennent l'expérience, la localisation géographique, la taille de l'entreprise et les compétences spécifiques.

Apprendre JavaScript n'est pas difficile, mais c'est difficile. 1) Comprendre les concepts de base tels que les variables, les types de données, les fonctions, etc. 2) Master la programmation asynchrone et les implémenter via des boucles d'événements. 3) Utilisez les opérations DOM et promettez de gérer les demandes asynchrones. 4) Évitez les erreurs courantes et utilisez des techniques de débogage. 5) Optimiser les performances et suivre les meilleures pratiques.

La discussion sur la réalisation des effets de défilement de parallaxe et d'animation des éléments dans cet article explorera comment réaliser le site officiel de Shiseido (https://www.shiseido.co.jp/sb/wonderland/) ...

Les dernières tendances de JavaScript incluent la montée en puissance de TypeScript, la popularité des frameworks et bibliothèques modernes et l'application de WebAssembly. Les prospects futurs couvrent des systèmes de type plus puissants, le développement du JavaScript côté serveur, l'expansion de l'intelligence artificielle et de l'apprentissage automatique, et le potentiel de l'informatique IoT et Edge.

Comment fusionner les éléments du tableau avec le même ID dans un seul objet en JavaScript? Lors du traitement des données, nous rencontrons souvent la nécessité d'avoir le même ID ...

Discussion approfondie des causes profondes de la différence de sortie Console.log. Cet article analysera les différences dans les résultats de sortie de la fonction Console.log dans un morceau de code et expliquera les raisons derrière. � ...
