


Comment créer un système de reconnaissance faciale à l'aide de FaceNet en Python
La technologie de reconnaissance faciale est devenue de plus en plus répandue dans diverses applications, des systèmes de sécurité aux médias sociaux. L'un des modèles les plus efficaces pour cette tâche est FaceNet, un modèle d'apprentissage en profondeur conçu pour la vérification, la reconnaissance et le clustering des visages.
Dans ce tutoriel, je vais vous montrer comment créer un système de reconnaissance faciale en Python à l'aide de FaceNet. Nous couvrirons tout, du chargement du modèle à la comparaison des visages. À la fin de ce guide, vous disposerez d'une base solide pour mettre en œuvre la reconnaissance faciale dans vos propres projets.
Qu’est-ce que FaceNet ?
FaceNet est un modèle d'apprentissage profond développé par Google qui cartographie les visages dans un espace euclidien de 128 dimensions. Ces intégrations représentent les caractéristiques essentielles d'un visage, ce qui facilite la comparaison et la reconnaissance des visages avec une grande précision. Contrairement aux méthodes traditionnelles de reconnaissance faciale, FaceNet se concentre sur l'intégration de l'apprentissage, ce qui le rend très efficace et évolutif.
Conditions préalables
Avant de plonger dans le code, assurez-vous d'avoir installé les éléments suivants :
- Python 3.x
- TensorFlow ou Keras (pour le modèle d'apprentissage profond)
- NumPy (pour les opérations numériques)
- OpenCV (pour le traitement d'images)
- Scikit-learn (pour appliquer la recherche du voisin le plus proche)
Vous pouvez installer ces dépendances en utilisant pip :
pip install tensorflow numpy opencv-python scikit-learn
Étape 1 : Chargement du modèle FaceNet pré-entraîné
Tout d'abord, nous allons charger un modèle FaceNet pré-entraîné. Vous pouvez soit télécharger le modèle à partir d'une source fiable, soit utiliser celui disponible via la bibliothèque keras-facenet.
from keras.models import load_model # Load the pre-trained FaceNet model model = load_model('facenet_keras.h5') print("Model Loaded Successfully")
Le chargement du modèle est la première étape de la configuration de notre système de reconnaissance faciale. Le modèle sera utilisé pour générer des intégrations pour les images, qui sont des représentations numériques des visages.
Étape 2 : Prétraitement des images pour FaceNet
FaceNet s'attend à ce que les images d'entrée soient de 160 x 160 pixels au format RVB. De plus, les valeurs des pixels doivent être normalisées avant d'être introduites dans le modèle.
import cv2 import numpy as np def preprocess_image(image_path): # Load the image using OpenCV img = cv2.imread(image_path) # Convert the image to RGB (FaceNet expects RGB images) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Resize the image to 160x160 pixels img = cv2.resize(img, (160, 160)) # Normalize the pixel values img = img.astype('float32') / 255.0 # Expand dimensions to match the input shape of FaceNet (1, 160, 160, 3) img = np.expand_dims(img, axis=0) return img
Cette fonction gère le prétraitement d'image requis par FaceNet. Il convertit l'image au format et à la taille appropriés, garantissant que le modèle reçoit des informations avec lesquelles il peut fonctionner efficacement.
Étape 3 : Générer des intégrations de visages
Ensuite, nous utiliserons le modèle FaceNet pour générer des intégrations à partir des images prétraitées. Ces intégrations serviront de représentations numériques uniques des visages.
def get_face_embedding(model, image_path): # Preprocess the image img = preprocess_image(image_path) # Generate the embedding embedding = model.predict(img) return embedding
La fonction get_face_embedding prend en compte le modèle et un chemin d'image, traite l'image et renvoie l'intégration. Cette intégration est ce que nous utiliserons pour la comparaison des visages.
Étape 4 : Comparaison de visages à l'aide d'intégrations
Pour déterminer si deux faces correspondent, nous comparons leurs plongements en calculant la distance euclidienne entre elles. Si la distance est inférieure à un certain seuil, les visages sont considérés comme une correspondance.
from numpy import linalg as LA def compare_faces(embedding1, embedding2, threshold=0.5): # Compute the Euclidean distance between the embeddings distance = LA.norm(embedding1 - embedding2) # Compare the distance to the threshold if distance < threshold: print("Face Matched.") else: print("Faces are different.") return distance
La fonction compare_faces calcule la distance entre deux intégrations. Si cette distance est inférieure au seuil spécifié (0,5 par défaut), la fonction imprime « Face Matched ». Sinon, il imprime "Les visages sont différents".
Étape 5 : tester le système de reconnaissance faciale
Enfin, testons notre système de reconnaissance faciale avec deux images pour voir s'il les identifie correctement comme étant la même personne ou non.
# Load the FaceNet model model = load_model('facenet_keras.h5') # Get embeddings for two images embedding1 = get_face_embedding(model, 'face1.jpg') embedding2 = get_face_embedding(model, 'face2.jpg') # Compare the two faces distance = compare_faces(embedding1, embedding2) print(f"Euclidean Distance: {distance}")
Sortir
- Si les visages correspondent, vous verrez : Visage correspondant.
- S'ils ne correspondent pas, vous verrez : les visages sont différents.
De plus, la distance euclidienne entre les deux intégrations sera imprimée.
Conclusion
Vous venez de créer un système de reconnaissance faciale simple mais puissant en utilisant FaceNet en Python. Ce système peut être facilement étendu pour inclure davantage de visages, gérer la reconnaissance en temps réel ou être intégré à des projets plus vastes. La grande précision et l'efficacité de FaceNet en font un excellent choix pour les tâches de reconnaissance faciale.
N'hésitez pas à expérimenter les valeurs seuils ou essayez d'utiliser ce système dans une application en temps réel comme un outil de reconnaissance faciale basé sur une webcam.
Si vous avez des questions ou avez besoin d'aide supplémentaire, laissez un commentaire ci-dessous. Bon codage !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
