Maison développement back-end Tutoriel Python Comment créer un système de reconnaissance faciale à l'aide de FaceNet en Python

Comment créer un système de reconnaissance faciale à l'aide de FaceNet en Python

Sep 04, 2024 pm 06:32 PM

How to Build a Face Recognition System Using FaceNet in Python

La technologie de reconnaissance faciale est devenue de plus en plus répandue dans diverses applications, des systèmes de sécurité aux médias sociaux. L'un des modèles les plus efficaces pour cette tâche est FaceNet, un modèle d'apprentissage en profondeur conçu pour la vérification, la reconnaissance et le clustering des visages.

Dans ce tutoriel, je vais vous montrer comment créer un système de reconnaissance faciale en Python à l'aide de FaceNet. Nous couvrirons tout, du chargement du modèle à la comparaison des visages. À la fin de ce guide, vous disposerez d'une base solide pour mettre en œuvre la reconnaissance faciale dans vos propres projets.

Qu’est-ce que FaceNet ?

FaceNet est un modèle d'apprentissage profond développé par Google qui cartographie les visages dans un espace euclidien de 128 dimensions. Ces intégrations représentent les caractéristiques essentielles d'un visage, ce qui facilite la comparaison et la reconnaissance des visages avec une grande précision. Contrairement aux méthodes traditionnelles de reconnaissance faciale, FaceNet se concentre sur l'intégration de l'apprentissage, ce qui le rend très efficace et évolutif.

Conditions préalables

Avant de plonger dans le code, assurez-vous d'avoir installé les éléments suivants :

  • Python 3.x
  • TensorFlow ou Keras (pour le modèle d'apprentissage profond)
  • NumPy (pour les opérations numériques)
  • OpenCV (pour le traitement d'images)
  • Scikit-learn (pour appliquer la recherche du voisin le plus proche)

Vous pouvez installer ces dépendances en utilisant pip :

pip install tensorflow numpy opencv-python scikit-learn
Copier après la connexion

Étape 1 : Chargement du modèle FaceNet pré-entraîné

Tout d'abord, nous allons charger un modèle FaceNet pré-entraîné. Vous pouvez soit télécharger le modèle à partir d'une source fiable, soit utiliser celui disponible via la bibliothèque keras-facenet.

from keras.models import load_model

# Load the pre-trained FaceNet model
model = load_model('facenet_keras.h5')
print("Model Loaded Successfully")
Copier après la connexion

Le chargement du modèle est la première étape de la configuration de notre système de reconnaissance faciale. Le modèle sera utilisé pour générer des intégrations pour les images, qui sont des représentations numériques des visages.

Étape 2 : Prétraitement des images pour FaceNet

FaceNet s'attend à ce que les images d'entrée soient de 160 x 160 pixels au format RVB. De plus, les valeurs des pixels doivent être normalisées avant d'être introduites dans le modèle.

import cv2
import numpy as np

def preprocess_image(image_path):
    # Load the image using OpenCV
    img = cv2.imread(image_path)

    # Convert the image to RGB (FaceNet expects RGB images)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Resize the image to 160x160 pixels
    img = cv2.resize(img, (160, 160))

    # Normalize the pixel values
    img = img.astype('float32') / 255.0

    # Expand dimensions to match the input shape of FaceNet (1, 160, 160, 3)
    img = np.expand_dims(img, axis=0)

    return img
Copier après la connexion

Cette fonction gère le prétraitement d'image requis par FaceNet. Il convertit l'image au format et à la taille appropriés, garantissant que le modèle reçoit des informations avec lesquelles il peut fonctionner efficacement.

Étape 3 : Générer des intégrations de visages

Ensuite, nous utiliserons le modèle FaceNet pour générer des intégrations à partir des images prétraitées. Ces intégrations serviront de représentations numériques uniques des visages.

def get_face_embedding(model, image_path):
    # Preprocess the image
    img = preprocess_image(image_path)

    # Generate the embedding
    embedding = model.predict(img)

    return embedding
Copier après la connexion

La fonction get_face_embedding prend en compte le modèle et un chemin d'image, traite l'image et renvoie l'intégration. Cette intégration est ce que nous utiliserons pour la comparaison des visages.

Étape 4 : Comparaison de visages à l'aide d'intégrations

Pour déterminer si deux faces correspondent, nous comparons leurs plongements en calculant la distance euclidienne entre elles. Si la distance est inférieure à un certain seuil, les visages sont considérés comme une correspondance.

from numpy import linalg as LA

def compare_faces(embedding1, embedding2, threshold=0.5):
    # Compute the Euclidean distance between the embeddings
    distance = LA.norm(embedding1 - embedding2)

    # Compare the distance to the threshold
    if distance < threshold:
        print("Face Matched.")
    else:
        print("Faces are different.")

    return distance
Copier après la connexion

La fonction compare_faces calcule la distance entre deux intégrations. Si cette distance est inférieure au seuil spécifié (0,5 par défaut), la fonction imprime « Face Matched ». Sinon, il imprime "Les visages sont différents".

Étape 5 : tester le système de reconnaissance faciale

Enfin, testons notre système de reconnaissance faciale avec deux images pour voir s'il les identifie correctement comme étant la même personne ou non.

# Load the FaceNet model
model = load_model('facenet_keras.h5')

# Get embeddings for two images
embedding1 = get_face_embedding(model, 'face1.jpg')
embedding2 = get_face_embedding(model, 'face2.jpg')

# Compare the two faces
distance = compare_faces(embedding1, embedding2)

print(f"Euclidean Distance: {distance}")
Copier après la connexion

Sortir

  • Si les visages correspondent, vous verrez : Visage correspondant.
  • S'ils ne correspondent pas, vous verrez : les visages sont différents.

De plus, la distance euclidienne entre les deux intégrations sera imprimée.

Conclusion

Vous venez de créer un système de reconnaissance faciale simple mais puissant en utilisant FaceNet en Python. Ce système peut être facilement étendu pour inclure davantage de visages, gérer la reconnaissance en temps réel ou être intégré à des projets plus vastes. La grande précision et l'efficacité de FaceNet en font un excellent choix pour les tâches de reconnaissance faciale.

N'hésitez pas à expérimenter les valeurs seuils ou essayez d'utiliser ce système dans une application en temps réel comme un outil de reconnaissance faciale basé sur une webcam.

Si vous avez des questions ou avez besoin d'aide supplémentaire, laissez un commentaire ci-dessous. Bon codage !


Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1673
14
Tutoriel PHP
1278
29
Tutoriel C#
1257
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Python pour le développement Web: applications clés Python pour le développement Web: applications clés Apr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

See all articles