Structures de données et algorithmes : graphiques
Introduction
Un graphe est une structure de données avec un certain nombre de sommets (nœuds) et d'arêtes (connexions) entre eux.
Un arbre est un exemple de graphique. Chaque arbre est un graphique, mais tous les graphiques ne sont pas un arbre. Par exemple, les graphiques comportant des cycles ne sont pas des arbres. Un arbre aura une racine et un chemin unique entre deux nœuds tandis qu'un graphe peut avoir plusieurs racines et plusieurs chemins entre les sommets.
Terminologie de base
Vertex : Un nœud dans un graphe.
Edge : La connexion entre deux sommets.
Dirigé : Lorsque la connexion entre deux sommets a une direction. Cela implique qu’il n’y a qu’une seule façon de passer d’un sommet à un autre. Un exemple pourrait être un graphique montrant les villes (sommets) et les routes (bords) entre elles.
Non orienté : Lorsque la connexion entre deux sommets sur un graphe va dans les deux sens. Un exemple pourrait être un graphique montrant des personnes (sommets) liées par leurs amitiés.
Degré : Le nombre d'arêtes connectées à un sommet. Les sommets d'un graphe orienté peuvent avoir un degré entrant ou sortant, qui est le nombre d'arêtes pointant respectivement vers et loin du sommet.
Pondéré : Un graphique dans lequel les arêtes ont des valeurs comme poids. Un exemple pourrait être une feuille de route, où les distances entre les nœuds sont représentées sous forme de poids.
Cyclique : Un graphe qui a un chemin allant d'au moins un sommet à lui-même.
Acyclique : Un graphe qui n'a pas de cycles, c'est-à-dire qu'aucun nœud n'a de chemin vers lui-même. Un Graphique acyclique dirigé est un type de graphique qui peut être utilisé pour afficher les flux de traitement des données.
Dense : Lorsqu'un graphe a proche du nombre maximum possible d'arêtes
Sparse : Lorsqu'un graphe a un nombre proche du minimum possible d'arêtes.
Auto-boucle : Lorsqu'une arête a un sommet relié à lui-même.
Multi-arêtes : Lorsqu'un graphe a plusieurs arêtes entre deux sommets.
Simple :Quand un graphe n'a pas d'auto-boucles ni de multi-arêtes.
Pour obtenir le nombre maximum d'arêtes dans un graphe orienté simple : n*(n-1) où n est le nombre de nœuds.
Pour obtenir le nombre maximum d'arêtes dans un graphe simple non orienté : n*(n-1)/2 où n est le nombre de nœuds.
Implémentation de graphiques en JavaScript
Pour implémenter un graphe, nous pouvons commencer par spécifier les sommets et les arêtes d'un graphe, vous trouverez ci-dessous un exemple de la façon de procéder étant donné le graphe suivant :
const vertices = ["A", "B", "C", "D", "E"]; const edges = [ ["A", "B"], ["A", "D"], ["B", "D"], ["B", "E"], ["C", "D"], ["D", "E"], ];
Ensuite on peut créer une fonction pour trouver ce qui est adjacent à un sommet donné :
const findAdjacentNodes = function (node) { const adjacentNodes = []; for (let edge of edges) { const nodeIndex = edge.indexOf(node); if (nodeIndex > -1) { let adjacentNode = nodeIndex === 0 ? edge[1] : edge[0]; adjacentNodes.push(adjacentNode); } } return adjacentNodes; };
Et une autre fonction pour vérifier si deux sommets sont connectés :
const isConnected = function (node1, node2) { const adjacentNodes = new Set(findAdjacentNodes(node1)); return adjacentNodes.has(node2); };
Liste de contiguïté
Une liste de contiguïté est une représentation d'un graphique où tous les sommets connectés à un nœud sont stockés sous forme de liste. Vous trouverez ci-dessous un graphique et une représentation visuelle de la liste de contiguïté correspondante.
Une liste de contiguïté peut être implémentée en JavaScript en créant deux classes, une classe Node et une classe Graph. La classe Node sera composée d'un constructeur et d'une méthode connect() pour joindre deux sommets. Il aura également les méthodes isConnected() et getAdjacentNodes() qui fonctionnent exactement de la même manière que celui indiqué ci-dessus.
class Node { constructor(value) { this.value = value; this.edgesList = []; } connect(node) { this.edgesList.push(node); node.edgesList.push(this); } getAdjNodes() { return this.edgesList.map((edge) => edge.value); } isConnected(node) { return this.edgesList.map((edge) => edge.value).indexOf(node.value) > -1; } }
La classe Graph se compose d'un constructeur et de la méthode addToGraph() qui ajoute un nouveau sommet au graphique.
class Graph { constructor(nodes) { this.nodes = [...nodes]; } addToGraph(node) { this.nodes.push(node); } }
Adjacency Matrix
A 2-D array where each array represents a vertex and each index represents a possible connection between vertices. An adjacency matrix is filled with 0s and 1s, with 1 representing a connection. The value at adjacencyMatrix[node1][node2] will show whether or not there is a connection between the two specified vertices. Below is is a graph and its visual representation as an adjacency matrix.
To implement this adjacency matrix in JavaScript, we start by creating two classes, the first being the Node class:
class Node { constructor(value) { this.value = value; } }
We then create the Graph class which will contain the constructor for creating the 2-D array initialized with zeros.
class Graph { constructor(nodes) { this.nodes = [...nodes]; this.adjacencyMatrix = Array.from({ length: nodes.length }, () => Array(nodes.length).fill(0)); } }
We will then add the addNode() method which will be used to add new vertices to the graph.
addNode(node) { this.nodes.push(node); this.adjacencyMatrix.forEach((row) => row.push(0)); this.adjacencyMatrix.push(new Array(this.nodes.length).fill(0)); }
Next is the connect() method which will add an edge between two vertices.
connect(node1, node2) { const index1 = this.nodes.indexOf(node1); const index2 = this.nodes.indexOf(node2); if (index1 > -1 && index2 > -1) { this.adjacencyMatrix[index1][index2] = 1; this.adjacencyMatrix[index2][index1] = 1; } }
We will also create the isConnected() method which can be used to check if two vertices are connected.
isConnected(node1, node2) { const index1 = this.nodes.indexOf(node1); const index2 = this.nodes.indexOf(node2); if (index1 > -1 && index2 > -1) { return this.adjacencyMatrix[index1][index2] === 1; } return false; }
Lastly we will add the printAdjacencyMatrix() method to the Graph class.
printAdjacencyMatrix() { console.log(this.adjacencyMatrix); }
Breadth First Search
Similar to a Breadth First Search in a tree, the vertices adjacent to the current vertex are visited before visiting any subsequent children. A queue is the data structure of choice when performing a Breadth First Search on a graph.
Below is a graph of international airports and their connections and we will use a Breadth First Search to find the shortest route(path) between two airports(vertices).
In order to implement this search algorithm in JavaScript, we will use the same Node and Graph classes we implemented the adjacency list above. We will create a breadthFirstTraversal() method and add it to the Graph class in order to traverse between two given vertices. This method will have the visitedNodes object, which will be used to store the visited vertices and their predecessors. It is initiated as null to show that the first vertex in our search has no predecessors.
breathFirstTraversal(start, end) { const queue = [start]; const visitedNodes = {}; visitedNodes[start.value] = null; while (queue.length > 0) { const node = queue.shift(); if (node.value === end.value) { return this.reconstructedPath(visitedNodes, end); } for (const adjacency of node.edgesList) { if (!visitedNodes.hasOwnProperty(adjacency.value)) { visitedNodes[adjacency.value] = node; queue.push(adjacency); } } } }
Once the end vertex is found, we will use the reconstructedPath() method in the Graph class in order to return the shortest path between two vertices. Each vertex is added iteratively to the shortestPath array, which in turn must be reversed in order to come up with the correct order for the shortest path.
reconstructedPath(visitedNodes, endNode) { let currNode = endNode; const shortestPath = []; while (currNode !== null) { shortestPath.push(currNode.value); currNode = visitedNodes[currNode.value]; } return shortestPath.reverse(); }
In the case of the graph of international airports, breathFirstTraversal(JHB, LOS) will return JHB -> LUA -> LOS as the shortest path. In the case of a weighted graph, we would use Dijkstra's algorithm to find the shortest path.
Depth First Search
Similar to a depth first search in a tree, this algorithm will fully explore every descendant of a vertex, before backtracking to the root. A stack is the data structure of choice for depth first traversals in a graph.
A depth first search can be used to detect a cycle in a graph. We will use the same graph of international airports to illustrate this in JavaScript.
Similar to the Breadth First Search algorithm above, this implementation of a Depth First Search algorithm in JavaScript will use the previously created Node and Graph classes. We will create a helper function called depthFirstTraversal() and add it to the Graph class.
depthFirstTraversal(start, visitedNodes = {}, parent = null) { visitedNodes[start.value] = true; for (const adjacency of start.edgesList) { if (!visitedNodes[adjacency.value]) { if (this.depthFirstTraversal(adjacency, visitedNodes, start)) { return true; } } else if (adjacency !== parent) { return true; } } return false; }
This will perform the Depth First Traversal of the graph, using the parent parameter to keep track of the previous vertex and prevent the detection of a cycle when revisiting the parent vertex. Visited vertices will be marked as true in the visitedNodes object. This method will then use recursion to visit previously unvisited vertices. If the vertex has already been visited, we check it against the parent parameter. A cycle has been found if the vertex has already been visited and it is not the parent.
We will also create the wrapper function hasCycle() in the Graph class. This function is used to detect a cycle in a disconnected graph. It will initialize the visitedNodes object and loop through all of the vertices in the graph.
hasCycle() { const visitedNodes = {}; for (const node of this.nodes) { if (!visitedNodes[node.value]) { if (this.depthFirstTraversal(node, visitedNodes)) { return true; } } } return false; }
In the case of the graph of international airports, the code will return true.
Depth First Traversal of a graph is also useful for pathfinding(not necessarily shortest path) and for solving mazes.
Abschluss
Ein fundiertes Verständnis von Graphen als Datenstruktur und den damit verbundenen Algorithmen ist unbedingt erforderlich, wenn man sein Studium von Datenstrukturen und Algorithmen vertieft. Obwohl dieser Leitfaden nicht so anfängerfreundlich ist wie die vorherigen Beiträge dieser Reihe, sollte er sich als nützlich erweisen, um Ihr Verständnis von Datenstrukturen und Algorithmen zu vertiefen.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Différents moteurs JavaScript ont des effets différents lors de l'analyse et de l'exécution du code JavaScript, car les principes d'implémentation et les stratégies d'optimisation de chaque moteur diffèrent. 1. Analyse lexicale: convertir le code source en unité lexicale. 2. Analyse de la grammaire: générer un arbre de syntaxe abstrait. 3. Optimisation et compilation: générer du code machine via le compilateur JIT. 4. Exécuter: Exécutez le code machine. Le moteur V8 optimise grâce à une compilation instantanée et à une classe cachée, SpiderMonkey utilise un système d'inférence de type, résultant en différentes performances de performances sur le même code.

Python convient plus aux débutants, avec une courbe d'apprentissage en douceur et une syntaxe concise; JavaScript convient au développement frontal, avec une courbe d'apprentissage abrupte et une syntaxe flexible. 1. La syntaxe Python est intuitive et adaptée à la science des données et au développement back-end. 2. JavaScript est flexible et largement utilisé dans la programmation frontale et côté serveur.

Le passage de C / C à JavaScript nécessite de s'adapter à la frappe dynamique, à la collecte des ordures et à la programmation asynchrone. 1) C / C est un langage dactylographié statiquement qui nécessite une gestion manuelle de la mémoire, tandis que JavaScript est dynamiquement typé et que la collecte des déchets est automatiquement traitée. 2) C / C doit être compilé en code machine, tandis que JavaScript est une langue interprétée. 3) JavaScript introduit des concepts tels que les fermetures, les chaînes de prototypes et la promesse, ce qui améliore la flexibilité et les capacités de programmation asynchrones.

Les principales utilisations de JavaScript dans le développement Web incluent l'interaction client, la vérification du formulaire et la communication asynchrone. 1) Mise à jour du contenu dynamique et interaction utilisateur via les opérations DOM; 2) La vérification du client est effectuée avant que l'utilisateur ne soumette les données pour améliorer l'expérience utilisateur; 3) La communication de rafraîchissement avec le serveur est réalisée via la technologie AJAX.

L'application de JavaScript dans le monde réel comprend un développement frontal et back-end. 1) Afficher les applications frontales en créant une application de liste TODO, impliquant les opérations DOM et le traitement des événements. 2) Construisez RestulAPI via Node.js et Express pour démontrer les applications back-end.

Comprendre le fonctionnement du moteur JavaScript en interne est important pour les développeurs car il aide à écrire du code plus efficace et à comprendre les goulots d'étranglement des performances et les stratégies d'optimisation. 1) Le flux de travail du moteur comprend trois étapes: analyse, compilation et exécution; 2) Pendant le processus d'exécution, le moteur effectuera une optimisation dynamique, comme le cache en ligne et les classes cachées; 3) Les meilleures pratiques comprennent l'évitement des variables globales, l'optimisation des boucles, l'utilisation de const et de locations et d'éviter une utilisation excessive des fermetures.

Python et JavaScript ont leurs propres avantages et inconvénients en termes de communauté, de bibliothèques et de ressources. 1) La communauté Python est amicale et adaptée aux débutants, mais les ressources de développement frontal ne sont pas aussi riches que JavaScript. 2) Python est puissant dans les bibliothèques de science des données et d'apprentissage automatique, tandis que JavaScript est meilleur dans les bibliothèques et les cadres de développement frontaux. 3) Les deux ont des ressources d'apprentissage riches, mais Python convient pour commencer par des documents officiels, tandis que JavaScript est meilleur avec MDNWEBDOCS. Le choix doit être basé sur les besoins du projet et les intérêts personnels.

Les choix de Python et JavaScript dans les environnements de développement sont importants. 1) L'environnement de développement de Python comprend Pycharm, Jupyternotebook et Anaconda, qui conviennent à la science des données et au prototypage rapide. 2) L'environnement de développement de JavaScript comprend Node.js, VScode et WebPack, qui conviennent au développement frontal et back-end. Le choix des bons outils en fonction des besoins du projet peut améliorer l'efficacité du développement et le taux de réussite du projet.
