Pourquoi vous avez besoin de l'informatique distribuée pour l'apprentissage automatique dans le monde réel

WBOY
Libérer: 2024-09-10 06:49:32
original
671 Les gens l'ont consulté

Why You Need Distributed Computing for Real-World Machine Learning

Et comment PySpark peut vous aider à gérer d'énormes ensembles de données comme un pro

Les frameworks d'apprentissage automatique comme PyTorch et TensorFlow sont géniaux pour créer des modèles. Mais la réalité est que lorsqu’il s’agit de projets réels, où vous traitez de gigantesques ensembles de données, vous avez besoin de plus qu’un simple bon modèle. Vous avez besoin d’un moyen de traiter et de gérer efficacement toutes ces données. C'est là que l'informatique distribuée, comme PySpark, entre en jeu pour sauver la situation.

Expliquons pourquoi la gestion du Big Data dans le monde réel de l'apprentissage automatique signifie aller au-delà de PyTorch et TensorFlow, et comment PySpark vous aide à y parvenir.
Le vrai problème : le Big Data
La plupart des exemples de ML que vous voyez en ligne utilisent de petits ensembles de données gérables. Vous pouvez mettre le tout en mémoire, jouer avec et entraîner un modèle en quelques minutes. Mais dans des scénarios réels, comme la détection de fraude par carte de crédit, les systèmes de recommandation ou les prévisions financières, vous avez affaire à des millions, voire des milliards de lignes. Soudain, votre ordinateur portable ou votre serveur ne peut plus le gérer.

Si vous essayez de charger toutes ces données dans PyTorch ou TensorFlow en même temps, les choses vont se casser. Ces frameworks sont conçus pour la formation de modèles, et non pour gérer efficacement d'énormes ensembles de données. C'est là que l'informatique distribuée devient cruciale.
Pourquoi PyTorch et TensorFlow ne suffisent pas
PyTorch et TensorFlow sont parfaits pour créer et optimiser des modèles, mais ils ne sont pas à la hauteur lorsqu'il s'agit de tâches de données à grande échelle. Deux problèmes majeurs :

  • Surcharge de mémoire : ils chargent l'intégralité de l'ensemble de données en mémoire avant l'entraînement. Cela fonctionne pour de petits ensembles de données, mais lorsque vous disposez de téraoctets de données, la partie est terminée.
  • Pas de traitement de données distribué : PyTorch et TensorFlow ne sont pas conçus pour gérer le traitement de données distribué. Si vous disposez d’énormes quantités de données réparties sur plusieurs machines, cela ne vous aide pas vraiment.

C'est là que PySpark brille. Il est conçu pour fonctionner avec des données distribuées, en les traitant efficacement sur plusieurs machines tout en gérant des ensembles de données volumineux sans faire planter votre système.

Exemple concret : Détection de fraude par carte de crédit avec PySpark
Prenons un exemple. Supposons que vous travailliez sur un système de détection de fraude utilisant les données de transactions par carte de crédit. Dans ce cas, nous utiliserons un ensemble de données populaire de Kaggle. Il contient plus de 284 000 transactions, et moins de 1 % d'entre elles sont frauduleuses.

Étape 1 : configurer PySpark dans Google Colab
Nous utiliserons Google Colab pour cela car il nous permet d'exécuter PySpark avec une configuration minimale.

!pip install pyspark

Copier après la connexion

Ensuite, importez les bibliothèques nécessaires et démarrez une session Spark.

import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, sum, udf
from pyspark.ml.feature import VectorAssembler, StringIndexer, MinMaxScaler
from pyspark.ml.classification import RandomForestClassifier, GBTClassifier
from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator
from pyspark.ml.linalg import Vectors
import numpy as np
from pyspark.sql.types import FloatType
Copier après la connexion

démarrer une session pyspark

spark = SparkSession.builder \
    .appName("FraudDetectionImproved") \
    .master("local[*]") \
    .config("spark.executorEnv.PYTHONHASHSEED", "0") \
    .getOrCreate()
Copier après la connexion

Étape 2 : Charger et préparer les données

data = spark.read.csv('creditcard.csv', header=True, inferSchema=True)
data = data.orderBy("Time")  # Ensure data is sorted by time
data.show(5)
data.describe().show()
Copier après la connexion
# Check for missing values in each column
data.select([sum(col(c).isNull().cast("int")).alias(c) for c in data.columns]).show()

# Prepare the feature columns
feature_columns = data.columns
feature_columns.remove("Class")  # Removing "Class" column as it is our label

# Assemble features into a single vector
assembler = VectorAssembler(inputCols=feature_columns, outputCol="features")
data = assembler.transform(data)
data.select("features", "Class").show(5)

# Split data into train (60%), test (20%), and unseen (20%)
train_data, temp_data = data.randomSplit([0.6, 0.4], seed=42)
test_data, unseen_data = temp_data.randomSplit([0.5, 0.5], seed=42)

# Print class distribution in each dataset
print("Train Data:")
train_data.groupBy("Class").count().show()

print("Test and parameter optimisation Data:")
test_data.groupBy("Class").count().show()

print("Unseen Data:")
unseen_data.groupBy("Class").count().show()
Copier après la connexion

Étape 3 : Initialiser le modèle

# Initialize RandomForestClassifier
rf = RandomForestClassifier(labelCol="Class", featuresCol="features", probabilityCol="probability")

# Create ParamGrid for Cross Validation
paramGrid = ParamGridBuilder() \
    .addGrid(rf.numTrees, [10, 20 ]) \
    .addGrid(rf.maxDepth, [5, 10]) \
    .build()

# Create 5-fold CrossValidator
crossval = CrossValidator(estimator=rf,
                          estimatorParamMaps=paramGrid,
                          evaluator=BinaryClassificationEvaluator(labelCol="Class", metricName="areaUnderROC"),
                          numFolds=5)
Copier après la connexion

Étape 4 : Ajuster, exécuter la validation croisée et choisir le meilleur ensemble de paramètres

# Run cross-validation, and choose the best set of parameters
rf_model = crossval.fit(train_data)

# Make predictions on test data
predictions_rf = rf_model.transform(test_data)

# Evaluate Random Forest Model
binary_evaluator = BinaryClassificationEvaluator(labelCol="Class", rawPredictionCol="rawPrediction", metricName="areaUnderROC")
pr_evaluator = BinaryClassificationEvaluator(labelCol="Class", rawPredictionCol="rawPrediction", metricName="areaUnderPR")

auc_rf = binary_evaluator.evaluate(predictions_rf)
auprc_rf = pr_evaluator.evaluate(predictions_rf)
print(f"Random Forest - AUC: {auc_rf:.4f}, AUPRC: {auprc_rf:.4f}")

# UDF to extract positive probability from probability vector
extract_prob = udf(lambda prob: float(prob[1]), FloatType())
predictions_rf = predictions_rf.withColumn("positive_probability", extract_prob(col("probability")))
Copier après la connexion

Étape 5 Fonction pour calculer la précision, le rappel et le score F1

# Function to calculate precision, recall, and F1-score
def calculate_metrics(predictions):
    tp = predictions.filter((col("Class") == 1) & (col("prediction") == 1)).count()
    fp = predictions.filter((col("Class") == 0) & (col("prediction") == 1)).count()
    fn = predictions.filter((col("Class") == 1) & (col("prediction") == 0)).count()

    precision = tp / (tp + fp) if (tp + fp) != 0 else 0
    recall = tp / (tp + fn) if (tp + fn) != 0 else 0
    f1_score = (2 * precision * recall) / (precision + recall) if (precision + recall) != 0 else 0

    return precision, recall, f1_score
Copier après la connexion

Étape 6 : Trouver le meilleur seuil pour le modèle

# Find the best threshold for the model
best_threshold = 0.5
best_f1 = 0
for threshold in np.arange(0.1, 0.9, 0.1):
    thresholded_predictions = predictions_rf.withColumn("prediction", (col("positive_probability") > threshold).cast("double"))
    precision, recall, f1 = calculate_metrics(thresholded_predictions)

    if f1 > best_f1:
        best_f1 = f1
        best_threshold = threshold

print(f"Best threshold: {best_threshold}, Best F1-score: {best_f1:.4f}")
Copier après la connexion

Étape 7 : Évaluer sur des données invisibles

# Evaluate on unseen data
predictions_unseen = rf_model.transform(unseen_data)
auc_unseen = binary_evaluator.evaluate(predictions_unseen)
print(f"Unseen Data - AUC: {auc_unseen:.4f}")

precision, recall, f1 = calculate_metrics(predictions_unseen)
print(f"Unseen Data - Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}")

area_under_roc = binary_evaluator.evaluate(predictions_unseen)
area_under_pr = pr_evaluator.evaluate(predictions_unseen)
print(f"Unseen Data - AUC: {area_under_roc:.4f}, AUPRC: {area_under_pr:.4f}")
Copier après la connexion

RESULTATS

Best threshold: 0.30000000000000004, Best F1-score: 0.9062
Unseen Data - AUC: 0.9384
Unseen Data - Precision: 0.9655, Recall: 0.7568, F1-score: 0.8485
Unseen Data - AUC: 0.9423, AUPRC: 0.8618
Copier après la connexion

Vous pouvez ensuite enregistrer ce modèle (quelques Ko) et l'utiliser n'importe où dans le pipeline pyspark

rf_model.save()
Copier après la connexion

Voici pourquoi PySpark fait une énorme différence lorsqu'il s'agit de traiter de grands ensembles de données dans des tâches d'apprentissage automatique réelles :

Il évolue facilement : PySpark peut répartir les tâches entre les clusters, vous permettant de traiter des téraoctets de données sans manquer de mémoire.
Traitement des données à la volée : PySpark n'a pas besoin de charger l'intégralité de l'ensemble de données en mémoire. Il traite les données selon les besoins, ce qui le rend beaucoup plus efficace.
Formation de modèles plus rapide : grâce à l'informatique distribuée, vous pouvez entraîner des modèles plus rapidement en répartissant la charge de travail de calcul sur plusieurs machines.
Pensées finales
PyTorch et TensorFlow sont des outils fantastiques pour créer des modèles d'apprentissage automatique, mais pour les tâches réelles à grande échelle, vous avez besoin de plus. L'informatique distribuée avec PySpark vous permet de gérer efficacement d'énormes ensembles de données, de traiter les données en temps réel et de faire évoluer vos pipelines d'apprentissage automatique.

Alors, la prochaine fois que vous travaillerez avec des données massives, qu'il s'agisse de détection de fraude, de systèmes de recommandation ou d'analyse financière, pensez à utiliser PySpark pour faire passer votre projet au niveau supérieur.

Pour le code complet et les résultats, consultez ce carnet. :
https://colab.research.google.com/drive/1W9naxNZirirLRodSEnHAUWevYd5LH8D4?authuser=5#scrollTo=odmodmqKcY23

__

Je suis Swapnil, n'hésitez pas à laisser vos commentaires, résultats et idées, ou envoyez-moi un ping - swapnil@nooffice.no pour les données, les concerts et les emplois de développement de logiciels

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

source:dev.to
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal
À propos de nous Clause de non-responsabilité Sitemap
Site Web PHP chinois:Formation PHP en ligne sur le bien-être public,Aidez les apprenants PHP à grandir rapidement!