Maison > Java > javaDidacticiel > Xor de N nombres

Xor de N nombres

Patricia Arquette
Libérer: 2024-09-21 20:15:32
original
361 Les gens l'ont consulté

Xor of N numbers

Étant donné un nombre entier N, trouver l'exor de la plage 1 à N
exor de 1 ^ 2 ^ 3 ^4 ^.....N;

Approche par force brute :
Tc:O(n)
Sc:O(1)

public int findExor(int N){

        //naive/brute force approach:
        int val  = 0;
        for(int i=1;i<5;i++){
            val =  val^ i;
        }
        return val;
    }
Copier après la connexion

Approche optimale :
Tc:O(1)
Sc:O(1)

    public int getExor(int N){
        //better approach

        /**
         * one thing to observe is 
         * 1 = 001  = 1
         * 1 ^2 = 001 ^ 010 = 011=       3
         * 1^2^3 = 011 ^ 011 = 0=        0
         * 1^2^3^4 = 000^100 = 100=      4
         * 1^2^3^4^5 = 100^101 = 001=    1
         * 1^2^3^4^5^6 = 001^110 =111=   7
         * 1^2^3^4^5^6^7 = 111^111=000=  0
         * 
         * what we can observer is : 
         * 
         * N%4==0 then result is: N
         * N%4 ==1 then result is: 1
         * N%4 ==2 then result is: N+1
         * N%4==3 then result is: 0
         * 
         * */
         if(N%4==0) return N;
         else if(N%4 ==1) return 1;
         else if(N%4==2) return N+1;
         else return 0;

    }
Copier après la connexion

Et si nous devons trouver l'exor entre des plages comme L et R
exemple trouver un exor entre les nombres 4 et 7 soit 4^5^6^7.

Pour résoudre ce problème, nous pouvons exploiter la même solution optimale ci-dessus getExor()

nous obtiendrons d'abord exor jusqu'à L-1, c'est-à-dire getExor(L-1) = 1 ^ 2 ^ 3 (puisque L-1 = 3)......equation(1)

puis nous trouverons getExor(R) = 1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 6 ^ 7 ----équation(2)

le enfin,

Result  = equation(1) ^ equation(2)
        = (1 ^ 2 ^ 3) ^ (1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 6 ^ 7)
        = (4^5^6^7)

Copier après la connexion
public int findExorOfRange(int L, int R){
        return getExor(L-1) ^ getExor(R);
    }

public int getExor(int N){
        //better approach

        /**
         * one thing to observe is 
         * 1 = 001  = 1
         * 1 ^2 = 001 ^ 010 = 011=       3
         * 1^2^3 = 011 ^ 011 = 0=        0
         * 1^2^3^4 = 000^100 = 100=      4
         * 1^2^3^4^5 = 100^101 = 001=    1
         * 1^2^3^4^5^6 = 001^110 =111=   7
         * 1^2^3^4^5^6^7 = 111^111=000=  0
         * 
         * what we can observer is : 
         * 
         * N%4==0 then result is: N
         * N%4 ==1 then result is: 1
         * N%4 ==2 then result is: N+1
         * N%4==3 then result is: 0
         * 
         * */
         if(N%4==0) return N;
         else if(N%4 ==1) return 1;
         else if(N%4==2) return N+1;
         else return 0;

    }
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers articles par auteur
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal