Sélection du modèle ML.
1. Introduction
Dans cet article, nous apprendrons comment choisir le meilleur modèle entre plusieurs modèles avec des hyperparamètres variables, dans certains cas nous pouvons avoir plus de 50 modèles différents, savoir comment en choisir un est important pour obtenir le plus performant pour votre ensemble de données .
Nous effectuerons la sélection du modèle à la fois en sélectionnant le meilleur algorithme d'apprentissage et ses meilleurs hyperparamètres.
Mais d'abord que sont les hyperparamètres ? Il s'agit des paramètres supplémentaires définis par l'utilisateur et qui affecteront la manière dont le modèle apprendra ses paramètres. Les Paramètres, quant à eux, sont ce que les modèles apprennent au cours du processus de formation.
2. Utilisation de la recherche exhaustive.
LaRecherche exhaustive consiste à sélectionner le meilleur modèle en recherchant sur une gamme d'hyperparamètres. Pour ce faire, nous utilisons le GridSearchCV de scikit-learn.
Comment fonctionne GridSearchCV :
- L'utilisateur définit des ensembles de valeurs possibles pour un ou plusieurs hyperparamètres.
- GridSearchCV entraîne un modèle en utilisant chaque valeur et/ou combinaison de valeurs.
- Le modèle ayant les meilleures performances est sélectionné comme meilleur modèle.
Exemple
Nous pouvons mettre en place une régression logistique comme algorithme d'apprentissage et régler deux hyperparamètres (C et la pénalité de régularisation). Nous pouvons également spécifier deux paramètres le solveur et les itérations maximales.
Maintenant, pour chaque combinaison de valeurs de C et de pénalité de régularisation, nous entraînons le modèle et l'évaluons à l'aide d'une validation croisée k-fold.
Puisque nous avons 10 valeurs possibles de C, 2 valeurs possibles de reg. pénalité et 5 plis, nous avons un total de (10 x 2 x 5 = 100) modèles candidats parmi lesquels le meilleur est sélectionné.
# Load libraries import numpy as np from sklearn import linear_model, datasets from sklearn.model_selection import GridSearchCV # Load data iris = datasets.load_iris() features = iris.data target = iris.target # Create logistic regression logistic = linear_model.LogisticRegression(max_iter=500, solver='liblinear') # Create range of candidate penalty hyperparameter values penalty = ['l1','l2'] # Create range of candidate regularization hyperparameter values C = np.logspace(0, 4, 10) # Create dictionary of hyperparameter candidates hyperparameters = dict(C=C, penalty=penalty) # Create grid search gridsearch = GridSearchCV(logistic, hyperparameters, cv=5, verbose=0) # Fit grid search best_model = gridsearch.fit(features, target) # Show the best model print(best_model.best_estimator_) # LogisticRegression(C=7.742636826811269, max_iter=500, penalty='l1', solver='liblinear') # Result
Obtenir le meilleur modèle :
# View best hyperparameters print('Best Penalty:', best_model.best_estimator_.get_params()['penalty']) print('Best C:', best_model.best_estimator_.get_params()['C']) # Best Penalty: l1 #Result # Best C: 7.742636826811269 # Result
3. Utilisation de la recherche aléatoire.
Ceci est couramment utilisé lorsque vous souhaitez une méthode de calcul moins coûteuse que la recherche exhaustive pour sélectionner le meilleur modèle.
Il convient de noter que la raison pour laquelle RandomizedSearchCV n'est pas intrinsèquement plus rapide que GridSearchCV, mais il atteint souvent des performances comparables à GridSearchCV en moins de temps simplement en testant moins de combinaisons.
Comment fonctionne RandomizedSearchCV :
- L'utilisateur fournira des hyperparamètres/distributions (par exemple normale, uniforme).
- Les algorithmes rechercheront aléatoirement un nombre spécifique de combinaisons aléatoires des valeurs d'hyperparamètres données sans remplacement.
Exemple
# Load data iris = datasets.load_iris() features = iris.data target = iris.target # Create logistic regression logistic = linear_model.LogisticRegression(max_iter=500, solver='liblinear') # Create range of candidate regularization penalty hyperparameter values penalty = ['l1', 'l2'] # Create distribution of candidate regularization hyperparameter values C = uniform(loc=0, scale=4) # Create hyperparameter options hyperparameters = dict(C=C, penalty=penalty) # Create randomized search randomizedsearch = RandomizedSearchCV( logistic, hyperparameters, random_state=1, n_iter=100, cv=5, verbose=0, n_jobs=-1) # Fit randomized search best_model = randomizedsearch.fit(features, target) # Print best model print(best_model.best_estimator_) # LogisticRegression(C=1.668088018810296, max_iter=500, penalty='l1', solver='liblinear') #Result.
Obtenir le meilleur modèle :
# View best hyperparameters print('Best Penalty:', best_model.best_estimator_.get_params()['penalty']) print('Best C:', best_model.best_estimator_.get_params()['C']) # Best Penalty: l1 # Result # Best C: 1.668088018810296 # Result
Remarque : Le nombre de modèles candidats formés est spécifié dans les paramètres n_iter (nombre d'itérations).
4. Sélection des meilleurs modèles parmi plusieurs algorithmes d'apprentissage.
Dans cette partie, nous verrons comment sélectionner le meilleur modèle en recherchant parmi une gamme d'algorithmes d'apprentissage et leurs hyperparamètres respectifs.
Nous pouvons le faire en créant simplement un dictionnaire d'algorithmes d'apprentissage candidats et de leurs hyperparamètres à utiliser comme espace de recherche pour GridSearchCV.
Étapes :
- Nous pouvons définir un espace de recherche qui comprend deux algorithmes d'apprentissage.
- Nous spécifions les hyperparamètres et nous définissons leurs valeurs candidates en utilisant le format classificateur[nom de l'hyperparamètre]_.
# Load libraries import numpy as np from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline # Set random seed np.random.seed(0) # Load data iris = datasets.load_iris() features = iris.data target = iris.target # Create a pipeline pipe = Pipeline([("classifier", RandomForestClassifier())]) # Create dictionary with candidate learning algorithms and their hyperparameters search_space = [{"classifier": [LogisticRegression(max_iter=500, solver='liblinear')], "classifier__penalty": ['l1', 'l2'], "classifier__C": np.logspace(0, 4, 10)}, {"classifier": [RandomForestClassifier()], "classifier__n_estimators": [10, 100, 1000], "classifier__max_features": [1, 2, 3]}] # Create grid search gridsearch = GridSearchCV(pipe, search_space, cv=5, verbose=0) # Fit grid search best_model = gridsearch.fit(features, target) # Print best model print(best_model.best_estimator_) # Pipeline(steps=[('classifier', LogisticRegression(C=7.742636826811269, max_iter=500, penalty='l1', solver='liblinear'))])
Le meilleur modèle :
Une fois la recherche terminée, nous pouvons utiliser best_estimator_ pour afficher l'algorithme d'apprentissage et les hyperparamètres du meilleur modèle.
5. Sélection du meilleur modèle lors du prétraitement.
Parfois, nous souhaitons peut-être inclure une étape de prétraitement lors de la sélection du modèle.
La meilleure solution consiste à créer un pipeline qui inclut l'étape de prétraitement et l'un de ses paramètres :
Le premier défi :
GridSeachCv utilise la validation croisée pour déterminer le modèle le plus performant.
Cependant, lors de la validation croisée, nous prétendons que le pli retenu comme ensemble de test n'est pas visible et ne fait donc pas partie de l'ajustement des étapes de prétraitement (par exemple, mise à l'échelle ou standardisation).
Pour cette raison, les étapes de prétraitement doivent faire partie de l'ensemble des actions entreprises par GridSearchCV.
La solution
Scikit-learn fournit le FeatureUnion qui nous permet de combiner correctement plusieurs actions de prétraitement.
étapes :
- We use _FeatureUnion _to combine two preprocessing steps: standardize the feature values(StandardScaler) and principal component analysis(PCA) - this object is called the preprocess and contains both of our preprocessing steps.
- Next we include preprocess in our pipeline with our learning algorithm.
This allows us to outsource the proper handling of fitting, transforming, and training the models with combinations of hyperparameters to scikit-learn.
Second Challenge:
Some preprocessing methods such as PCA have their own parameters, dimensionality reduction using PCA requires the user to define the number of principal components to use to produce the transformed features set. Ideally we would choose the number of components that produces a model with the greatest performance for some evaluation test metric.
Solution.
In scikit-learn when we include candidate component values in the search space, they are treated like any other hyperparameter to be searched over.
# Load libraries import numpy as np from sklearn import datasets from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler # Set random seed np.random.seed(0) # Load data iris = datasets.load_iris() features = iris.data target = iris.target # Create a preprocessing object that includes StandardScaler features and PCA preprocess = FeatureUnion([("std", StandardScaler()), ("pca", PCA())]) # Create a pipeline pipe = Pipeline([("preprocess", preprocess), ("classifier", LogisticRegression(max_iter=1000, solver='liblinear'))]) # Create space of candidate values search_space = [{"preprocess__pca__n_components": [1, 2, 3], "classifier__penalty": ["l1", "l2"], "classifier__C": np.logspace(0, 4, 10)}] # Create grid search clf = GridSearchCV(pipe, search_space, cv=5, verbose=0, n_jobs=-1) # Fit grid search best_model = clf.fit(features, target) # Print best model print(best_model.best_estimator_) # Pipeline(steps=[('preprocess', FeatureUnion(transformer_list=[('std', StandardScaler()), ('pca', PCA(n_components=1))])), ('classifier', LogisticRegression(C=7.742636826811269, max_iter=1000, penalty='l1', solver='liblinear'))]) # Result
After the model selection is complete we can view the preprocessing values that produced the best model.
Preprocessing steps that produced the best modes
# View best n_components best_model.best_estimator_.get_params() # ['preprocess__pca__n_components'] # Results
5. Speeding Up Model Selection with Parallelization.
That time you need to reduce the time it takes to select a model.
We can do this by training multiple models simultaneously, this is done by using all the cores in our machine by setting n_jobs=-1
# Load libraries import numpy as np from sklearn import linear_model, datasets from sklearn.model_selection import GridSearchCV # Load data iris = datasets.load_iris() features = iris.data target = iris.target # Create logistic regression logistic = linear_model.LogisticRegression(max_iter=500, solver='liblinear') # Create range of candidate regularization penalty hyperparameter values penalty = ["l1", "l2"] # Create range of candidate values for C C = np.logspace(0, 4, 1000) # Create hyperparameter options hyperparameters = dict(C=C, penalty=penalty) # Create grid search gridsearch = GridSearchCV(logistic, hyperparameters, cv=5, n_jobs=-1, verbose=1) # Fit grid search best_model = gridsearch.fit(features, target) # Print best model print(best_model.best_estimator_) # Fitting 5 folds for each of 2000 candidates, totalling 10000 fits # LogisticRegression(C=5.926151812475554, max_iter=500, penalty='l1', solver='liblinear')
6. Speeding Up Model Selection ( Algorithm Specific Methods).
This a way to speed up model selection without using additional compute power.
This is possible because scikit-learn has model-specific cross-validation hyperparameter tuning.
Sometimes the characteristics of a learning algorithms allows us to search for the best hyperparameters significantly faster.
Example:
LogisticRegression is used to conduct a standard logistic regression classifier.
LogisticRegressionCV implements an efficient cross-validated logistic regression classifier that can identify the optimum value of the hyperparameter C.
# Load libraries from sklearn import linear_model, datasets # Load data iris = datasets.load_iris() features = iris.data target = iris.target # Create cross-validated logistic regression logit = linear_model.LogisticRegressionCV(Cs=100, max_iter=500, solver='liblinear') # Train model logit.fit(features, target) # Print model print(logit) # LogisticRegressionCV(Cs=100, max_iter=500, solver='liblinear')
Note:A major downside to LogisticRegressionCV is that it can only search a range of values for C. This limitation is common to many of scikit-learn's model-specific cross-validated approaches.
I hope this Article was helpful in creating a quick overview of how to select a machine learning model.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
