


Gestion des valeurs aberrantes en Python - Méthode IQR
Introduction
Avant de découvrir des informations à partir de données du monde réel, il est important d'examiner vos données pour garantir qu'elles sont cohérentes et exemptes d'erreurs. Cependant, les données peuvent contenir des erreurs et certaines valeurs peuvent sembler différer des autres valeurs. Ces valeurs sont appelées valeurs aberrantes. Les valeurs aberrantes ont un impact négatif sur l'analyse des données, conduisant à des informations erronées qui conduisent à une mauvaise prise de décision de la part des parties prenantes. Par conséquent, le traitement des valeurs aberrantes est une étape critique de l’étape de prétraitement des données en science des données. Dans cet article, nous évaluerons différentes manières de gérer les valeurs aberrantes.
Valeurs aberrantes
Les valeurs aberrantes sont des points de données qui diffèrent considérablement de la majorité des points de données d'un ensemble de données. Ce sont des valeurs qui se situent en dehors de la plage de valeurs attendue ou habituelle pour une variable particulière. des valeurs aberrantes se produisent pour diverses raisons, par exemple une erreur lors de la saisie des données, des erreurs d'échantillonnage. Dans le machine learning, les valeurs aberrantes peuvent amener vos modèles à faire des prédictions incorrectes, entraînant ainsi des prédictions inexactes.
Détection des valeurs aberrantes dans un ensemble de données à l'aide du notebook Jupyter
- Importer des bibliothèques python
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') plt.style.use('ggplot')
- Chargez votre fichier csv à l'aide de pandas
df_house_price = pd.read_csv(r'C:\Users\Admin\Desktop\csv files\housePrice.csv')
- Vérifiez les cinq premières lignes de l'ensemble de données sur les prix de l'immobilier pour avoir un aperçu de votre datafrane
df_house_price.head()
- Vérifiez les valeurs aberrantes dans la colonne des prix à l'aide d'un diagramme en boîte.
sns.boxplot(df_house_price['Price']) plt.title('Box plot showing outliers in prices') plt.show()
- D'après la visualisation en boîte à moustaches, la colonne de prix a des valeurs aberrantes
- Nous devons maintenant trouver des moyens de gérer ces valeurs aberrantes pour garantir une meilleure prise de décision et garantir que les modèles d'apprentissage automatique effectuent la prédiction correcte
Méthode IQR de gestion des valeurs aberrantes
- La méthode IQR signifie que l'intervalle interquartile mesure la répartition de la moitié médiane de vos données. Il s'agit de la plage correspondant aux 50 % moyens de votre échantillon.
Étapes pour supprimer les valeurs aberrantes à l’aide de l’intervalle interquartile
- Calculez le premier quartile (Q1) qui représente 25% des données et le troisième quartile (Q3) qui représente 75% des données.
Q1 = df_house_price['Price'].quantile(0.25) Q3 = df_house_price['Price'].quantile(0.75)
- calculer l'intervalle interquartile
IQR = Q3 - Q1
- Déterminez les limites des valeurs aberrantes.
lower_bound = Q1 - 1.5 * IQR
- La limite inférieure signifie que toute valeur inférieure à -5454375000.0 est une valeur aberrante
upper_bound = Q3 + 1.5 * IQR
La limite supérieure signifie que toute valeur supérieure à 12872625000,0 est une valeur aberrante
Supprimer les valeurs aberrantes dans la colonne prix
filt = (df_house_price['Price'] >= lower_bound) & (df_house_price['Price'] <= upper_bound) df = df_house_price[filt] df.head()
- Box plot Après avoir supprimé les valeurs aberrantes
sns.boxplot(df['Price']) plt.title('Box plot after removing outliers') plt.show()
Différentes méthodes de gestion des valeurs aberrantes
- Méthode Z-Score
- Limitation des percentiles (Winsorizing)
- Découpage (troncature)
- Imputation
- Méthodes basées sur le clustering, par exemple DBSCAN
Conclusion
La méthode IQR est simple et robuste aux valeurs aberrantes et ne dépend pas de l'hypothèse de normalité. L'inconvénient est qu'il ne peut gérer que des données univariées et qu'il peut supprimer des points de données valides si les données sont asymétriques ou ont des queues lourdes.
Merci
suivez-moi sur linked in et sur github pour en savoir plus.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
