


Lors du traçage avec Matplotlib, pourquoi les performances souffrent-elles et que peut-on faire ?
Considérations sur les performances pour le traçage Matplotlib
Lors de l'évaluation de différentes bibliothèques de traçage Python, vous pouvez rencontrer des problèmes de performances lors de l'utilisation de Matplotlib. Cet article explore pourquoi le traçage de Matplotlib peut être lent et propose des solutions pour améliorer sa vitesse.
Causes de la lenteur
Les performances lentes de Matplotlib proviennent principalement de deux facteurs :
- Redessins fréquents : Chaque fois que fig.canvas.draw() est appelé, il actualise la figure entière, y compris des éléments tels que les limites des axes et les étiquettes de graduation. Ce processus nécessite beaucoup de calculs.
- De nombreuses sous-parcelles :Les tracés avec plusieurs sous-parcelles comportant de nombreuses étiquettes de graduation peuvent ralentir considérablement le rendu.
Amélioration des performances
Pour améliorer les performances, envisagez les stratégies suivantes :
1. Utiliser le Blitting :
Le Blitting implique uniquement de mettre à jour une partie spécifique du canevas au lieu de redessiner la figure entière. Cela réduit considérablement la charge de calcul. Matplotlib fournit des méthodes de blitting spécifiques au backend qui varient en fonction du framework GUI utilisé.
2. Restreindre le redessin :
Utilisez l'option animation=True lors du traçage. Combinée au module d'animations Matplotlib, cette technique permet des mises à jour d'objets spécifiques sans déclencher un redessinage complet du canevas.
3. Personnaliser les sous-parcelles :
Réduisez le nombre de sous-parcelles et cochez les étiquettes. Supprimez les éléments inutiles pour réduire le temps de rendu.
4. Améliorez l'efficacité du code :
Refactorisez votre code pour améliorer sa structure et réduire le nombre d'opérations effectuées. Utilisez des opérations vectorisées lorsque cela est possible.
Exemple :
Voici une version optimisée du code fourni dans la question, en utilisant le blitting avec copy_from_bbox et restaurer_region :
<code class="python">import matplotlib.pyplot as plt import numpy as np import time x = np.arange(0, 2*np.pi, 0.01) y = np.sin(x) fig, axes = plt.subplots(nrows=6) fig.show() # Draw the canvas initially styles = ['r-', 'g-', 'y-', 'm-', 'k-', 'p-'] lines = [ax.plot(x, y, style)[0] for ax, style in zip(axes, styles)] # Store background images of the axes backgrounds = [fig.canvas.copy_from_bbox(ax.bbox) for ax in axes] tstart = time.time() for i in range(1, 200): for j, line in enumerate(lines, start=1): # Restore the background fig.canvas.restore_region(backgrounds[j-1]) # Update the data line.set_ydata(sin(j*x+i/10.0)) # Draw the artist and blit ax.draw_artist(line) fig.canvas.blit(ax.bbox) print('FPS:', 200/(time.time()-tstart))</code>
Bibliothèques alternatives
Si les performances de Matplotlib restent insatisfaisantes, envisagez des bibliothèques de traçage alternatives telles que Bokeh, Plotly ou Altaïr. Ces bibliothèques privilégient l'interactivité en temps réel et l'optimisation des performances.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
