


Comment combiner différents types de données dans des tableaux NumPy sans perdre l'efficacité de la mémoire ?
Combinaison de types de données hétérogènes dans des tableaux NumPy
Dans NumPy, il est courant de rencontrer des situations où différents tableaux contenant divers types de données doivent être combiné. Bien que la concaténation de tableaux constitue une solution simple, elle entraîne souvent la conversion de l'intégralité du tableau vers le type de données du premier tableau, ce qui entraîne des inefficacités potentielles de la mémoire.
Pour relever ce défi, envisagez les approches suivantes :
Tableaux d'enregistrement :
Les tableaux d'enregistrement offrent une méthode polyvalente pour stocker des types de données hétérogènes dans un seul tableau sans compromettre l'efficacité de la mémoire. Ils utilisent une structure de type tableau, où chaque colonne représente un champ avec son type de données correspondant. Par exemple, pour combiner un tableau de chaînes (A) avec un tableau d'entiers (B), vous pouvez créer un tableau d'enregistrements comme suit :
<code class="python">records = numpy.rec.fromarrays((A, B), names=('keys', 'data'))</code>
Le tableau d'enregistrements se compose désormais de deux champs : clés ( chaînes) et des données (entiers). Vous pouvez accéder à ces champs individuellement en utilisant l'accès aux attributs, tels que records['keys'] et records['data'].
Tableaux structurés :
Tableaux structurés, similaire aux tableaux d'enregistrement, fournit un moyen de définir des types de données personnalisés pour les tableaux. Au lieu d'utiliser l'accès aux attributs, ils utilisent l'indexation pour accéder à différents champs. Pour créer un tableau structuré :
<code class="python">arr = numpy.array([('a', 0), ('b', 1)], dtype=([('keys', '|S1'), ('data', 'i8')]))</code>
L'argument dtype spécifie un tuple de tuples où chaque tuple définit le nom du champ et le type de données. Le tableau résultant arr contient des champs clés (chaînes) et des données (entiers) accessibles via l'indexation, par exemple arr['keys'] et arr['data'].
Remarque :
Les tableaux structurés n'offrent pas d'accès aux attributs comme les tableaux d'enregistrements. Cependant, ils peuvent être plus efficaces pour certaines opérations grâce à leur approche d’indexation directe. De plus, les tableaux d'enregistrement et les tableaux structurés prennent en charge des opérations telles que le découpage, le masquage et la diffusion, offrant ainsi une flexibilité dans la manipulation des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...
