


Pourquoi « int64_t » se comporte-t-il différemment dans les compilations GCC 64 bits ?
Long Long Int vs. Long Int vs. Int64_t en C
Les traits de type C peuvent présenter un comportement bizarre, en particulier avec les 64 bits signés types entiers. Voici pourquoi :
Dans les compilations 32 bits et 64 bits (GCC et MSVC), le programme suivant se comporte comme prévu :
<code class="cpp">#include <iostream> #include <cstdint> template <typename T> bool is_int64() { return false; } template <> bool is_int64<int64_t>() { return true; } int main() { std::cout << "int:\t" << is_int64<int>() << std::endl; std::cout << "int64_t:\t" << is_int64<int64_t>() << std::endl; std::cout << "long int:\t" << is_int64<long int>() << std::endl; std::cout << "long long int:\t" << is_int64<long long int>() << std::endl; return 0; }</code>
La sortie indique correctement que int64_t , long int et long long int sont tous des types entiers 64 bits équivalents.
Cependant, une compilation GCC 64 bits produit un résultat différent :
int: 0 int64_t: 1 long int: 1 long long int: 0
Ce comportement surprenant provient de la définition de la bibliothèque standard C de int64_t :
<code class="cpp"># if __WORDSIZE == 64 typedef long int int64_t; # else __extension__ typedef long long int int64_t; # endif</code>
Dans une compilation 64 bits, int64_t est défini comme long int, et non comme long long int. Cela signifie que la spécialisation de modèle is_int64() qui vérifie int64_t correspondra à long int au lieu de long long int.
Solution utilisant la spécialisation de modèle partielle :
Pour résoudre ce problème problème, vous pouvez utiliser une spécialisation partielle de modèle pour définir explicitement is_int64() pour long long int :
<code class="cpp">#if defined(__GNUC__) && (__WORDSIZE == 64) template <> bool is_int64<long long int>() { return true; } #endif</code>
Cependant, cette solution dépend du compilateur et peut être fastidieuse à mettre en œuvre pour chaque type affecté.
Solution alternative utilisant Boost :
Boost fournit une solution plus élégante avec le modèle variadique boost::is_same :
<code class="cpp">#include <boost/type_traits/is_same.hpp> template <typename T> bool is_int64_boost() { return boost::is_same<T, int64_t>::value; } int main() { std::cout << "int:\t" << is_int64_boost<int>() << std::endl; std::cout << "int64_t:\t" << is_int64_boost<int64_t>() << std::endl; std::cout << "long int:\t" << is_int64_boost<long int>() << std::endl; std::cout << "long long int:\t" << is_int64_boost<long long int>() << std::endl; return 0; }</code>
Cette approche identifiera correctement tous les types entiers 64 bits équivalents, quelle que soit leur représentation exacte dans la bibliothèque standard.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











L'histoire et l'évolution de C # et C sont uniques, et les perspectives d'avenir sont également différentes. 1.C a été inventé par Bjarnestrousstrup en 1983 pour introduire une programmation orientée objet dans le langage C. Son processus d'évolution comprend plusieurs normalisations, telles que C 11, introduisant des mots clés automobiles et des expressions de lambda, C 20 introduisant les concepts et les coroutines, et se concentrera sur les performances et la programmation au niveau du système à l'avenir. 2.C # a été publié par Microsoft en 2000. Combinant les avantages de C et Java, son évolution se concentre sur la simplicité et la productivité. Par exemple, C # 2.0 a introduit les génériques et C # 5.0 a introduit la programmation asynchrone, qui se concentrera sur la productivité et le cloud computing des développeurs à l'avenir.

Il existe des différences significatives dans les courbes d'apprentissage de l'expérience C # et C et du développeur. 1) La courbe d'apprentissage de C # est relativement plate et convient au développement rapide et aux applications au niveau de l'entreprise. 2) La courbe d'apprentissage de C est raide et convient aux scénarios de contrôle haute performance et de bas niveau.

C Les apprenants et les développeurs peuvent obtenir des ressources et le soutien de Stackoverflow, des cours R / CPP de Reddit, Coursera et EDX, des projets open source sur GitHub, des services de conseil professionnel et CPPCON. 1. StackOverflow fournit des réponses aux questions techniques; 2. La communauté R / CPP de Reddit partage les dernières nouvelles; 3. Coursera et Edx fournissent des cours de C officiels; 4. Projets open source sur GitHub tels que LLVM et Boost Améliorer les compétences; 5. Les services de conseil professionnel tels que Jetbrains et Perforce fournissent un support technique; 6. CPPCON et d'autres conférences aident les carrières

C interagit avec XML via des bibliothèques tierces (telles que TinyXML, PUGIXML, XERCES-C). 1) Utilisez la bibliothèque pour analyser les fichiers XML et les convertir en structures de données propices à C. 2) Lors de la génération de XML, convertissez la structure des données C au format XML. 3) Dans les applications pratiques, le XML est souvent utilisé pour les fichiers de configuration et l'échange de données afin d'améliorer l'efficacité du développement.

C a toujours une pertinence importante dans la programmation moderne. 1) Les capacités de fonctionnement matériel et directes en font le premier choix dans les domaines du développement de jeux, des systèmes intégrés et de l'informatique haute performance. 2) Les paradigmes de programmation riches et les fonctionnalités modernes telles que les pointeurs intelligents et la programmation de modèles améliorent sa flexibilité et son efficacité. Bien que la courbe d'apprentissage soit raide, ses capacités puissantes le rendent toujours important dans l'écosystème de programmation d'aujourd'hui.

L'avenir de C se concentrera sur l'informatique parallèle, la sécurité, la modularisation et l'apprentissage AI / Machine: 1) L'informatique parallèle sera améliorée par des fonctionnalités telles que les coroutines; 2) La sécurité sera améliorée par le biais de mécanismes de vérification et de gestion de la mémoire plus stricts; 3) La modulation simplifiera l'organisation et la compilation du code; 4) L'IA et l'apprentissage automatique inviteront C à s'adapter à de nouveaux besoins, tels que l'informatique numérique et le support de programmation GPU.

C isnotdying; il se révolte.1) C reste réévèreurtoitSversatity et effecciation en termes

L'application de l'analyse statique en C comprend principalement la découverte de problèmes de gestion de la mémoire, la vérification des erreurs de logique de code et l'amélioration de la sécurité du code. 1) L'analyse statique peut identifier des problèmes tels que les fuites de mémoire, les doubles versions et les pointeurs non initialisés. 2) Il peut détecter les variables inutilisées, le code mort et les contradictions logiques. 3) Les outils d'analyse statique tels que la couverture peuvent détecter le débordement de tampon, le débordement entier et les appels API dangereux pour améliorer la sécurité du code.
