


Comment calculer les différences de scores pour plusieurs sites Web et pays dans Pandas ?
Regroupement et recherche de différences dans plusieurs champs avec Pandas
Lorsque vous travaillez avec des ensembles de données, il est souvent nécessaire de calculer les différences ou les changements entre les valeurs au fil du temps ou entre différentes catégories. Dans Pandas, vous pouvez effectuer efficacement ces calculs en utilisant les fonctions groupby() et diff().
Dans le scénario donné, vous disposez d'un DataFrame avec des données sur divers sites Web et leurs scores dans différents pays. Votre objectif est de déterminer la différence de score de 1/3/5 jours pour chaque combinaison de pays de site.
Tri et regroupement des dataframes
Pour commencer, triez votre DataFrame par site, pays et colonnes de dates. Le tri garantit que les points de données similaires sont regroupés, ce qui facilite le calcul des différences.
<code class="python">df = df.sort_values(by=['site', 'country', 'date'])</code>
Ensuite, utilisez la fonction groupby() pour regrouper les données par site et par pays.
<code class="python">grouped = df.groupby(['site', 'country'])</code>
Calcul des différences
Une fois les données regroupées, vous pouvez maintenant calculer les différences de score à l'aide de la fonction diff(). Cette fonction calcule la différence entre les lignes consécutives d'un groupe.
<code class="python">df['diff'] = grouped['score'].diff().fillna(0)</code>
La fonction diff() remplit les valeurs manquantes avec 0 par défaut, garantissant un ensemble de données cohérent et complet.
Frame de données résultant
Le DataFrame résultant contiendra les données d'origine ainsi que les différences de score calculées :
date site country score diff 8 2018-01-01 fb es 100 0.0 9 2018-01-02 fb gb 100 0.0 5 2018-01-01 fb us 50 0.0 6 2018-01-02 fb us 55 5.0 7 2018-01-03 fb us 100 45.0 1 2018-01-01 google ch 50 0.0 4 2018-01-02 google ch 10 -40.0 0 2018-01-01 google us 100 0.0 2 2018-01-02 google us 70 -30.0 3 2018-01-03 google us 60 -10.0
Ce DataFrame fournit la différence de score souhaitée sur 1/3/5 jours pour chaque combinaison site/pays.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texte

Comment télécharger des fichiers dans Python

Comment utiliser la belle soupe pour analyser HTML?

Comment travailler avec des documents PDF à l'aide de Python

Comment se cacher en utilisant Redis dans les applications Django

Présentation de la boîte à outils en langage naturel (NLTK)

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?
