


Comment puis-je regrouper des données dans des compartiments significatifs pour la visualisation d'histogrammes dans SQL ?
Détermination des tailles optimales des compartiments d'histogramme
Dans l'analyse des données, les histogrammes sont des outils précieux pour représenter visuellement la distribution des données. Bien qu'il soit possible de générer des histogrammes à l'aide de langages de script, ce processus peut-il être réalisé directement dans SQL ? La réponse est oui, et la question suivante approfondit ce sujet.
Le principal défi réside dans la définition des tailles des bacs d'histogramme. Dans la plupart des cas, l'objectif est de regrouper les données dans des plages prédéfinies pour obtenir une représentation plus informative et plus complète. La question présentée fournit une requête SQL qui regroupe les données par une colonne entière appelée « total », mais elle note également que les lignes résultantes sont trop nombreuses, ce qui rend difficile la visualisation de la distribution.
La solution réside dans le regroupement des données. dans des bacs plus grands. La requête SQL d'origine peut être modifiée pour y parvenir :
<code class="sql">SELECT ROUND(total, -2) AS bucket, COUNT(*) AS count FROM faults GROUP BY bucket;</code>
La fonction ROUND, avec un argument négatif, arrondit les valeurs "totales" à l'intervalle prédéfini le plus proche. Dans ce cas, l'intervalle est fixé à -2, ce qui signifie arrondir aux 100 (-2) les plus proches. Cela crée des catégories avec des plages de [0-99], [100-199], etc.
Le regroupement des données par la colonne « seau » combine efficacement les décomptes des valeurs comprises dans chaque intervalle, ce qui entraîne un histogramme plus concis et significatif. Le résultat ressemblerait à l'exemple fourni dans la question :
+------------+---------------+ | total | count(total) | +------------+---------------+ | 30 - 40 | 23 | | 40 - 50 | 15 | | 50 - 60 | 51 | | 60 - 70 | 45 | ------------------------------
Cette technique fournit une méthode simple pour créer des histogrammes en SQL, même lorsqu'il s'agit de données numériques. En spécifiant les tailles de compartiments appropriées, les analystes peuvent obtenir une compréhension plus claire de la distribution des données et prendre des décisions plus éclairées.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Le rôle principal de MySQL dans les applications Web est de stocker et de gérer les données. 1.MySQL traite efficacement les informations utilisateur, les catalogues de produits, les enregistrements de transaction et autres données. 2. Grâce à SQL Query, les développeurs peuvent extraire des informations de la base de données pour générer du contenu dynamique. 3.MySQL fonctionne basé sur le modèle client-serveur pour assurer une vitesse de requête acceptable.

INNODB utilise des redologues et des undologs pour assurer la cohérence et la fiabilité des données. 1. REDOLOGIE RÉCLABLIER MODIFICATION DE PAGE DES DONNÉES Pour assurer la récupération des accidents et la persistance des transactions. 2.Undologs Enregistre la valeur des données d'origine et prend en charge le Rollback de la transaction et MVCC.

Par rapport à d'autres langages de programmation, MySQL est principalement utilisé pour stocker et gérer les données, tandis que d'autres langages tels que Python, Java et C sont utilisés pour le traitement logique et le développement d'applications. MySQL est connu pour ses performances élevées, son évolutivité et son support multiplateforme, adapté aux besoins de gestion des données, tandis que d'autres langues présentent des avantages dans leurs domaines respectifs tels que l'analyse des données, les applications d'entreprise et la programmation système.

La cardinalité de l'index MySQL a un impact significatif sur les performances de la requête: 1. L'indice de cardinalité élevé peut réduire plus efficacement la plage de données et améliorer l'efficacité de la requête; 2. L'indice de cardinalité faible peut entraîner une analyse complète de la table et réduire les performances de la requête; 3. Dans l'indice conjoint, des séquences de cardinalité élevées doivent être placées devant pour optimiser la requête.

Les opérations de base de MySQL incluent la création de bases de données, les tables et l'utilisation de SQL pour effectuer des opérations CRUD sur les données. 1. Créez une base de données: CreatedAtAbaseMy_First_DB; 2. Créez un tableau: CreateTableBooks (idIntauto_inCmentPrimaryKey, TitleVarchar (100) notnull, AuthorVarchar (100) notnull, publied_yearint); 3. Données d'insertion: INSERTINTOBOOKS (titre, auteur, publié_year) VA

MySQL convient aux applications Web et aux systèmes de gestion de contenu et est populaire pour son open source, ses performances élevées et sa facilité d'utilisation. 1) Par rapport à PostgreSQL, MySQL fonctionne mieux dans les requêtes simples et les opérations de lecture simultanées élevées. 2) Par rapport à Oracle, MySQL est plus populaire parmi les petites et moyennes entreprises en raison de son open source et de son faible coût. 3) Par rapport à Microsoft SQL Server, MySQL est plus adapté aux applications multiplateformes. 4) Contrairement à MongoDB, MySQL est plus adapté aux données structurées et au traitement des transactions.

InnodBBufferPool réduit les E / S de disque en mettant en cache des données et des pages d'indexation, améliorant les performances de la base de données. Son principe de travail comprend: 1. La lecture des données: lire les données de BufferPool; 2. Écriture de données: Après avoir modifié les données, écrivez dans BufferPool et actualisez-les régulièrement sur le disque; 3. Gestion du cache: utilisez l'algorithme LRU pour gérer les pages de cache; 4. Mécanisme de lecture: Chargez à l'avance des pages de données adjacentes. En dimensionner le tampon et en utilisant plusieurs instances, les performances de la base de données peuvent être optimisées.

MySQL gère efficacement les données structurées par la structure de la table et la requête SQL, et met en œuvre des relations inter-tableaux à travers des clés étrangères. 1. Définissez le format de données et tapez lors de la création d'une table. 2. Utilisez des clés étrangères pour établir des relations entre les tables. 3. Améliorer les performances par l'indexation et l'optimisation des requêtes. 4. Bases de données régulièrement sauvegarde et surveillent régulièrement la sécurité des données et l'optimisation des performances.
