Maison > développement back-end > Tutoriel Python > eq et ne dans PyTorch

eq et ne dans PyTorch

Susan Sarandon
Libérer: 2024-11-05 19:12:02
original
801 Les gens l'ont consulté

eq and ne in PyTorch

Achetez-moi un café☕

*Mémos :

  • Mon message explique gt() et lt().
  • Mon message explique ge() et le().
  • Mon message explique isclose() et égal().

eq() peut vérifier si zéro ou plusieurs éléments du 1er tenseur 0D ou plus D sont égaux à zéro ou plusieurs éléments du 2ème tenseur 0D ou plus D par élément, obtenant le tenseur 0D ou plus D de zéro ou plusieurs éléments comme indiqué ci-dessous :

*Mémos :

  • eq() peut être utilisé avec une torche ou un tenseur.
  • Le 1er argument (entrée) avec torch ou en utilisant un tenseur (Required-Type : tenseur de int, float, complexe ou bool).
  • Le 2ème argument avec torch ou le 1er argument avec un tenseur est autre (Required-Type : tenseur ou scalaire de int, float, complexe ou bool).
  • Il y a un argument avec torch(Optional-Default:None-Type:tensor) : *Mémos :
    • out= doit être utilisé.
    • Mon message explique notre argument.
  • Le résultat est le tenseur D supérieur qui a plus d'éléments.
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])

torch.eq(input=tensor1, other=tensor2)
tensor1.eq(other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([False, True, True])

tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[False, True, False],
#         [False, False, True]])

torch.eq(input=tensor1, other=3)
# tensor(False)

torch.eq(input=tensor2, other=3)
# tensor([[True, False, False],
#         [False, True, False]])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
                        [0, 0, 0],
                        [3, 3, 3]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[True, False, False],
#         [False, True, False], 
#         [False, False, True]])

torch.eq(input=tensor1, other=3)
# tensor([False, False, True])

torch.eq(input=tensor2, other=3)
# tensor([[False, False, False],
#         [False, False, False],
#         [True, True, True]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
                        [0., 0., 0.],
                        [3., 3., 3.]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, True, False], 
#         [False, False, True]])

torch.eq(input=tensor1, other=3.)
# tensor([False, False, True])

tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
                        [0.+0.j, 0.+0.j, 0.+0.j],
                        [3.+0.j, 3.+0.j, 3.+.0j]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, True, False],
#         [False, False, True]])

torch.eq(input=tensor1, other=3.+0.j)
# tensor([False, False, True])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False],
                        [True, False, True]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, True, True],
#         [False, False, False],
#         [True, True, True]])

torch.eq(input=tensor1, other=True)
# tensor([True, False, True])
Copier après la connexion

ne() peut vérifier si zéro ou plusieurs éléments du 1er tenseur 0D ou plus D ne sont pas égaux à zéro ou plusieurs éléments du 2e tenseur 0D ou plus D par élément, obtenant le tenseur 0D ou plus D de zéro ou plusieurs éléments comme indiqué ci-dessous :

*Mémos :

  • ne() peut être utilisé avec une torche ou un tenseur.
  • Le 1er argument (entrée) avec torch ou en utilisant un tenseur (Required-Type : tenseur de int, float, complexe ou bool).
  • Le 2ème argument avec torch ou le 1er argument avec un tenseur est autre (Required-Type : tenseur ou scalaire de int, float, complexe ou bool).
  • Il y a un argument avec torch(Optional-Default:None-Type:tensor) : *Mémos :
    • out= doit être utilisé.
    • Mon message explique notre argument.
  • not_equal() est l'alias de ne().
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])

torch.ne(input=tensor1, other=tensor2)
tensor1.ne(other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([True, False, False])

tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3)
# tensor(True)

torch.ne(input=tensor2, other=3)
# tensor([[False, True, True],
#         [True, False, True]])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
                        [0, 0, 0],
                        [3, 3, 3]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3)
# tensor([True, True, False])

torch.ne(input=tensor2, other=3)
# tensor([[True, True, True],
#         [True, True, True],
#         [False, False, False]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
                        [0., 0., 0.],
                        [3., 3., 3.]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3.)
# tensor([True, True, False])

tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
                        [0.+0.j, 0.+0.j, 0.+0.j],
                        [3.+0.j, 3.+0.j, 3.+.0j]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3.+0.j)
# tensor([True, True, False])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False],
                        [True, False, True]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, False, False],
#         [True, True, True],
#         [False, False, False]])

torch.ne(input=tensor1, other=True)
# tensor([False, True, False])
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Derniers articles par auteur
Tutoriels populaires
Plus>
Derniers téléchargements
Plus>
effets Web
Code source du site Web
Matériel du site Web
Modèle frontal