


Comment puis-je diviser le texte d'une colonne en plusieurs lignes à l'aide de Pandas et Python ?
Diviser le texte d'une colonne en plusieurs lignes
Lorsque vous travaillez avec des fichiers CSV volumineux, il peut être nécessaire de diviser le texte dans une colonne spécifique en plusieurs lignes. Pandas et Python offrent des méthodes efficaces pour accomplir cette tâche.
Utilisation de Pandas
-
Split by Space :
df['Seatblocks'].str.split(' ').apply(Series, 1).stack()
Copier après la connexionCela divise chaque ligne de la colonne « Seatblocks » par espace et crée une nouvelle colonne pour chaque chaîne résultante.
-
Divisé par deux points :
df['Seatblocks'].str.split(' ').apply(lambda x: Series(x.split(':')))
Copier après la connexionCela divise davantage chaque chaîne de la nouvelle colonne par deux points, créant ainsi plusieurs colonnes pour chaque chaîne séparée par deux points.
Exemple
Considérez ce fichier CSV :
CustNum | CustomerName | ItemQty | Item | Seatblocks | ItemExt |
---|---|---|---|---|---|
32363 | McCartney, Paul | 3 | F04 | 2:218:10:4,6 | 60 |
31316 | Lennon, John | 25 | F01 | 1:13:36:1,12 1:13:37:1,13 | 300 |
En utilisant les méthodes ci-dessus, la colonne « Seatblocks » peut être divisée en plusieurs lignes :
CustNum | CustomerName | ItemQty | Item | Seatblocks1 | Seatblocks2 | Seatblocks3 | Seatblocks4 | ItemExt |
---|---|---|---|---|---|---|---|---|
32363 | McCartney, Paul | 3 | F04 | 2 | 218 | 10 | 4,6 | 60 |
31316 | Lennon, John | 25 | F01 | 1 | 13 | 36 | 1,12 | 300 |
31316 | Lennon, John | 25 | F01 | 1 | 13 | 37 | 1,13 | 300 |
Conclusion
En utilisant les opérations de fractionnement et d'empilement de Pandas, il est possible de restructurer efficacement les données texte d'une colonne en plusieurs lignes, permettant une analyse et une manipulation plus approfondies.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.
