Maison développement back-end Tutoriel Python Premiers pas avec la recherche de vecteurs (partie 2)

Premiers pas avec la recherche de vecteurs (partie 2)

Nov 10, 2024 am 02:07 AM

Getting Started with Vector Search (Part 2)

Dans la première partie, nous avons configuré PostgreSQL avec pgvector. Voyons maintenant comment fonctionne réellement la recherche vectorielle.

Contenu

  • Que sont les intégrations ?
  • Chargement des exemples de données
  • Explorer la recherche de vecteurs
  • Comprendre les opérateurs PostgreSQL
  • Prochaines étapes

Que sont les intégrations ?

Une intégration est comme un résumé intelligent du contenu en chiffres. La distance entre deux plongements indique leur niveau de similarité. Une petite distance suggère que les vecteurs sont assez similaires, et une grande distance indique qu'ils sont moins liés.

? Book A: Web Development  (Distance: 0.2) ⬅️ Very Similar!
? Book B: JavaScript 101   (Distance: 0.3) ⬅️ Similar!
? Book C: Cooking Recipes  (Distance: 0.9) ❌ Not Similar
Copier après la connexion

Chargement d'exemples de données

Maintenant, remplissons notre base de données avec quelques données. Nous utiliserons :

  • API Open Library pour les données de livres
  • API OpenAI pour créer des intégrations
  • pgvector pour les stocker et les rechercher

Structure du projet

pgvector-setup/             # From Part 1
  ├── compose.yml
  ├── postgres/
  │   └── schema.sql
  ├── .env                  # New: for API keys
  └── scripts/              # New: for data loading
      ├── requirements.txt
      ├── Dockerfile
      └── load_data.py
Copier après la connexion

Créer un script

Commençons par un script pour charger des données à partir d'API externes. Le script complet est ici.

Configuration du chargement des données

  1. Créer .env :
OPENAI_API_KEY=your_openai_api_key
Copier après la connexion
  1. Mettez à jour compose.yml pour ajouter le chargeur de données :
services:
  # ... existing db service from Part 1

  data_loader:
    build:
      context: ./scripts
    environment:
      - DATABASE_URL=postgresql://postgres:password@db:5432/example_db
      - OPENAI_API_KEY=${OPENAI_API_KEY}
    depends_on:
      - db
Copier après la connexion
  1. Charger les données :
docker compose up data_loader
Copier après la connexion

Vous devriez voir 10 livres de programmation avec leurs métadonnées.

Explorer la recherche de vecteurs

Connectez-vous à votre base de données :

docker exec -it pgvector-db psql -U postgres -d example_db
Copier après la connexion

Comprendre les données vectorielles

Voyons à quoi ressemblent réellement les intégrations :

-- View first 5 dimensions of an embedding
SELECT
    name,
    (embedding::text::float[])[1:5] as first_5_dimensions
FROM items
LIMIT 1;
Copier après la connexion
  • Chaque intégration a 1536 dimensions (en utilisant le modèle d'OpenAI)
  • Les valeurs varient généralement de -1 à 1
  • Ces chiffres représentent une signification sémantique

Trouver des livres similaires

Essayez une simple recherche de similarité :

-- Find 3 books similar to any book about Web
SELECT name, metadata
FROM items
ORDER BY embedding <-> (
    SELECT embedding
    FROM items
    WHERE metadata->>'title' LIKE '%Web%'
    LIMIT 1
)
LIMIT 3;
Copier après la connexion
  1. Trouver un livre avec "Web" dans son titre
  2. Obtenez l'intégration de ce livre (sa représentation mathématique)
  3. Comparez cette intégration avec les intégrations de tous les autres livres
  4. Obtenez les 3 livres les plus similaires (plus petites distances)

Comprendre les opérateurs PostgreSQL

Décomposons les opérateurs utilisés dans les requêtes de recherche vectorielle :

Opérateur de texte JSON : ->>

Extrait la valeur texte d'un champ JSON.

Exemple :

-- If metadata = {"title": "ABC"}, it returns "ABC"
SELECT metadata->>'title' FROM items;
Copier après la connexion

Opérateur de distance vectorielle : <->

Mesure la similarité entre deux vecteurs.

  • Plus petite distance = Plus similaire
  • Plus grande distance = Moins similaire

Exemple :

-- Find similar books
SELECT name, embedding <-> query_embedding as distance
FROM items
ORDER BY distance
LIMIT 3;
Copier après la connexion

Prochaines étapes

Ensuite, nous allons :

  • Créer une application FastAPI
  • Créer des points de terminaison de recherche
  • Rendre notre recherche de vecteurs accessible via API

Restez à l'écoute pour la partie 3 : « Créer une API de recherche de vecteurs » ! ?

N'hésitez pas à laisser un commentaire ci-dessous ! ?

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1668
14
Tutoriel PHP
1273
29
Tutoriel C#
1256
24
Python: jeux, GUIS, et plus Python: jeux, GUIS, et plus Apr 13, 2025 am 12:14 AM

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et temps: tirer le meilleur parti de votre temps d'étude Python et temps: tirer le meilleur parti de votre temps d'étude Apr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

See all articles