


Pourquoi StreamingResponse de FastAPI ne diffuse-t-il pas de fonctions de générateur ?
FastAPI StreamingResponse ne diffuse pas de données avec la fonction de générateur
StreamingResponse de FastAPI est destiné à renvoyer les données au client dès qu'elles deviennent disponibles. Cependant, il a été signalé que StreamingResponse ne fonctionnait pas comme prévu lors de l'utilisation des fonctions du générateur. Cet article examinera les causes potentielles de ce problème et fournira une solution.
Opérations de blocage et fonctions de générateur
Les fonctions de générateur en Python peuvent définir une séquence de valeurs qui sont en a donné un à la fois. Cependant, si une opération de blocage (telle que time.sleep()) est effectuée dans une fonction génératrice, elle peut bloquer la boucle d'événements, empêchant FastAPI de diffuser des données vers le client.
Def vs. Async Def
FastAPI gère StreamingResponse différemment selon que la fonction génératrice utilise la syntaxe def ou async def. Si la fonction du générateur est définie à l'aide de la syntaxe async def, FastAPI suppose qu'il s'agit d'un générateur asynchrone et l'exécute dans un pool de threads ou un pool de tâches. Cependant, si la fonction génératrice utilise la syntaxe def, FastAPI la reconnaît comme un générateur de blocage et utilise iterate_in_threadpool() pour l'exécuter dans un thread séparé.
Approche recommandée
Pour éviter de bloquer les opérations et assurer un bon streaming, il est recommandé d'utiliser une fonction de générateur asynchrone (async def). Si nécessaire, toute opération de blocage doit être effectuée dans un pool de threads externe et attendue pour éviter de perturber la boucle d'événements.
Type de média de réponse
Dans certains cas, les navigateurs peuvent texte tampon/réponses simples pour vérifier le type MIME. Pour éviter cela, il est conseillé de spécifier un type de média différent, tel que text/event-stream, application/json, ou de définir l'en-tête X-Content-Type-Options sur nosniff.
Exemple
Voici un exemple d'application FastAPI fonctionnelle avec une fonction génératrice pour le streaming data :
from fastapi import FastAPI, StreamingResponse, Request from fastapi.responses import HTMLResponse import asyncio app = FastAPI() @app.get("/stream") async def streaming_data(request: Request): def generate_data(): for i in range(10): yield b'some fake data\n\n' await asyncio.sleep(0.5) return StreamingResponse(generate_data(), media_type="text/event-stream")
Conclusion
En évitant les opérations de blocage, en utilisant des fonctions de générateur asynchrone et en spécifiant le type de média approprié, vous pouvez vous assurer que FastAPI StreamingResponse fonctionne comme prévu , vous permettant de diffuser efficacement des données aux clients.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
