


Comment gérer efficacement les erreurs dans le module de requêtes Python ?
Gestion des erreurs Try/Except dans le module de requêtes Python
L'utilisation du module Requests dans Python est un moyen pratique de gérer les appels d'API et les requêtes HTTP. . Lorsqu'une erreur se produit lors de l'exécution d'une requête, il est essentiel de mettre en place une gestion robuste des erreurs.
Ce code est-il correct ?
try: r = requests.get(url, params={'s': thing}) except requests.ConnectionError, e: print(e)
Ce code tente pour intercepter uniquement les erreurs liées à la connexion en gérant l'exception ConnectionError. Cependant, cela ne couvre pas tous les scénarios d'erreur possibles que le module Requêtes peut rencontrer.
De meilleures façons de structurer la gestion des erreurs
Pour garantir que toutes les erreurs potentielles sont traitées, il est recommandé d'intercepter la classe d'exceptions de base request.exceptions.RequestException au lieu d'exceptions spécifiques comme ConnectionError.
try: r = requests.get(url, params={'s': thing}) except requests.exceptions.RequestException as e: # This is the correct syntax raise SystemExit(e)
Vous pouvez également gérer des exceptions spécifiques séparément et prendre différentes actions en conséquence. Par exemple, vous pouvez gérer les délais d'attente différemment des erreurs de connexion.
try: r = requests.get(url, params={'s': thing}) except requests.exceptions.Timeout: # Maybe set up for a retry, or continue in a retry loop except requests.exceptions.TooManyRedirects: # Tell the user their URL was bad and try a different one except requests.exceptions.RequestException as e: # catastrophic error. bail. raise SystemExit(e)
Détecter les erreurs HTTP
Si vous souhaitez déclencher des exceptions pour les erreurs HTTP telles que 401 non autorisées, vous pouvez utiliser la méthode Response.raise_for_status().
try: r = requests.get('http://www.google.com/nothere') r.raise_for_status() except requests.exceptions.HTTPError as err: raise SystemExit(err)
En gérant minutieusement les exceptions et en personnalisant le comportement en fonction du type d'erreur, vous pouvez vous assurer que votre code répond de manière appropriée aux erreurs et aux entrées de l'utilisateur lors des requêtes HTTP. .
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.
