Maison développement back-end Tutoriel Python Un moyen simple de trouver la complexité temporelle d'un algorithme

Un moyen simple de trouver la complexité temporelle d'un algorithme

Nov 22, 2024 am 02:15 AM

Easy way to find the Time Complexity of an Algorithm

La complexité temporelle est considérée comme l'un des sujets les plus difficiles pour les débutants qui débutent tout juste en résolution de problèmes. Ici, je fournis l'aide-mémoire pour l'analyse de la complexité temporelle. J'espère que cela aide. S'il vous plaît laissez-moi savoir si vous avez des questions.

Aide-mémoire pour l'analyse de la complexité temporelle

Tableau de référence rapide

O(1)       - Constant time
O(log n)   - Logarithmic (halving/doubling)
O(n)       - Linear (single loop)
O(n log n) - Linearithmic (efficient sorting)
O(n²)      - Quadratic (nested loops)
O(2ⁿ)      - Exponential (recursive doubling)
O(n!)      - Factorial (permutations)
Copier après la connexion

Identifier les modèles

1. O(1) - Constante

# Look for:
- Direct array access
- Basic math operations
- Fixed loops
- Hash table lookups

# Examples:
arr[0]
x + y
for i in range(5)
hashmap[key]
Copier après la connexion

2. O(log n) - Logarithmique

# Look for:
- Halving/Doubling
- Binary search patterns
- Tree traversal by level

# Examples:
while n > 0:
    n = n // 2

left, right = 0, len(arr)-1
while left <= right:
    mid = (left + right) // 2
Copier après la connexion

3. O(n) - Linéaire

# Look for:
- Single loops
- Array traversal
- Linear search
- Hash table building

# Examples:
for num in nums:
    # O(1) operation
    total += num

for i in range(n):
    # O(1) operation
    arr[i] = i
Copier après la connexion

4. O(n log n) - Linéarithmique

# Look for:
- Efficient sorting
- Divide and conquer
- Tree operations with traversal

# Examples:
nums.sort()
sorted(nums)
merge_sort(nums)
Copier après la connexion

5. O(n²) - Quadratique

# Look for:
- Nested loops
- Simple sorting
- Matrix traversal
- Comparing all pairs

# Examples:
for i in range(n):
    for j in range(n):
        # O(1) operation

# Pattern finding
for i in range(n):
    for j in range(i+1, n):
        # Compare pairs
Copier après la connexion

6. O(2ⁿ) - Exponentiel

# Look for:
- Double recursion
- Power set
- Fibonacci recursive
- All subsets

# Examples:
def fib(n):
    if n <= 1: return n
    return fib(n-1) + fib(n-2)

def subsets(nums):
    if not nums: return [[]]
    result = subsets(nums[1:])
    return result + [nums[0:1] + r for r in result]
Copier après la connexion

Complexité temporelle des opérations courantes

Opérations sur les tableaux/listes

# O(1)
arr[i]              # Access
arr.append(x)       # Add end
arr.pop()           # Remove end

# O(n)
arr.insert(i, x)    # Insert middle
arr.remove(x)       # Remove by value
arr.index(x)        # Find index
min(arr), max(arr)  # Find min/max
Copier après la connexion

Opérations de dictionnaire/ensemble

# O(1) average
d[key]              # Access
d[key] = value      # Insert
key in d            # Check existence
d.get(key)          # Get value

# O(n)
len(d)              # Size
d.keys()            # Get keys
d.values()          # Get values
Copier après la connexion

Opérations sur les chaînes

# O(n)
s + t               # Concatenation
s.find(t)           # Substring search
s.replace(old, new) # Replace
''.join(list)       # Join

# O(n²) potential
s += char           # Repeated concatenation
Copier après la connexion

Analyse de boucle

Boucle unique

# O(n)
for i in range(n):
    # O(1) operations

# O(n/2) = O(n)
for i in range(0, n, 2):
    # Skip elements still O(n)
Copier après la connexion

Boucles imbriquées

# O(n²)
for i in range(n):
    for j in range(n):
        # O(1) operations

# O(n * m)
for i in range(n):
    for j in range(m):
        # Different sizes

# O(n²/2) = O(n²)
for i in range(n):
    for j in range(i, n):
        # Triangular still O(n²)
Copier après la connexion

Plusieurs boucles

# O(n + m)
for i in range(n):
    # O(1)
for j in range(m):
    # O(1)

# O(n + n²) = O(n²)
for i in range(n):
    # O(1)
for i in range(n):
    for j in range(n):
        # O(1)
Copier après la connexion

Analyse récursive

Récursion linéaire

# O(n)
def factorial(n):
    if n <= 1: return 1
    return n * factorial(n-1)
Copier après la connexion

Récursion binaire

# O(2ⁿ)
def fibonacci(n):
    if n <= 1: return n
    return fibonacci(n-1) + fibonacci(n-2)
Copier après la connexion

Diviser et conquérir

# O(n log n)
def mergeSort(arr):
    if len(arr) <= 1: return arr
    mid = len(arr) // 2
    left = mergeSort(arr[:mid])
    right = mergeSort(arr[mid:])
    return merge(left, right)
Copier après la connexion

Drapeaux rouges d’optimisation

Boucles cachées

# String operations
for c in string:
    newStr += c  # O(n²)

# List comprehension
[x for x in range(n) for y in range(n)]  # O(n²)
Copier après la connexion

Fonctions intégrées

len()           # O(1)
min(), max()    # O(n)
sorted()        # O(n log n)
list.index()    # O(n)
Copier après la connexion

Conseils pour l'analyse

  1. Compter les boucles imbriquées
  2. Vérifiez le branchement récursif
  3. Considérez les opérations cachées
  4. Recherchez diviser pour régner
  5. Vérifier la complexité des fonctions intégrées
  6. Considérez la moyenne par rapport au pire des cas
  7. Surveillez les variables de boucle
  8. Considérez les contraintes de saisie

Merci d'avoir lu, merci de laisser un pouce bleu sur le message si vous avez trouvé cela utile. Bravo !

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Comment résoudre le problème des autorisations rencontré lors de la visualisation de la version Python dans le terminal Linux? Apr 01, 2025 pm 05:09 PM

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu? Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu? Apr 02, 2025 am 07:15 AM

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Comment copier efficacement la colonne entière d'une dataframe dans une autre dataframe avec différentes structures dans Python? Apr 01, 2025 pm 11:15 PM

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Comment Uvicorn écoute-t-il en permanence les demandes HTTP sans servir_forever ()? Apr 01, 2025 pm 10:51 PM

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures? Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment obtenir des données d'information en contournant le mécanisme anti-frawler d'Investing.com? Comment obtenir des données d'information en contournant le mécanisme anti-frawler d'Investing.com? Apr 02, 2025 am 07:03 AM

Comprendre la stratégie anti-rampe d'investissement.com, Beaucoup de gens essaient souvent de ramper les données d'actualités sur Investing.com (https://cn.investing.com/news/latest-news) ...

See all articles