Maison développement back-end Tutoriel Python Comment remodeler un DataFrame Pandas à l'aide de la fonction Melt et d'un dictionnaire ?

Comment remodeler un DataFrame Pandas à l'aide de la fonction Melt et d'un dictionnaire ?

Nov 22, 2024 am 07:08 AM

How to Reshape a Pandas DataFrame Using the Melt Function and a Dictionary?

Fonction Pandas Melt : remodeler les trames de données pour l'analyse

Question :

Considérez une trame de données avec plusieurs colonnes et un dictionnaire :

df = pd.DataFrame([[2, 4, 7, 8, 1, 3, 2013], [9, 2, 4, 5, 5, 6, 2014]], colonnes=['Amy', 'Bob', "Carl", "Chris", "Ben", "Autre", 'Année'])<br>

d = {'A' : ['Amy'], 'B' : ['Bob', 'Ben'], 'C' : ['Carl', 'Chris']}<br>

Comment faire nous remodelons le dataframe pour qu'il ressemble à la structure suivante, où les colonnes sont fondues et regroupées ?

    Nom du groupe Année Valeur<br> 0 A Amy 2013 2<br> 1 A Amy 2014 9<br> 2 B Bob 2013 4<br> 3 B Bob 2014 2<br> 4 B Ben 2013 1<br> 5 B Ben 2014 5<br>6C Carl 2013 7<br>7 C Carl 2014 4<br>8 C Chris 2013 8<br>9 C Chris 2014 5<br>10 Autre 2013 3<br>11 Autre 2014 6<br>

Réponse :

Pour remodeler le dataframe à l'aide de la fonction de fusion, suivez ces étapes :

  1. Faire fondre le dataframe : Fondre le dataframe dans un format large à l'aide du fonction de fusion. Cela convertira les colonnes en lignes, avec le paramètre id_vars utilisé pour spécifier les colonnes qui doivent rester intactes.

    m = pd.melt(df, id_vars=['Year'], var_name='Name')
    Copier après la connexion
  2. Créez un dictionnaire de mappage : Remodelez le dictionnaire d pour créer un mappage entre les noms de colonnes et le groupe noms.

    d2 = {}
    for k, v in d.items():
        for item in v:
            d2[item] = k
    Copier après la connexion
  3. Ajouter un « Groupe » : Mappez le dictionnaire d2 nouvellement créé à la colonne « Nom » pour ajouter la colonne « Groupe ».

    m['Group'] = m['Name'].map(d2)
    Copier après la connexion
  4. Déplacer 'Autre' : Déplacer les valeurs 'Autre' de la colonne « Nom » à la colonne « Groupe ».

    mask = m['Name'] == 'Other'
    m.loc[mask, 'Name'] = ''
    m.loc[mask, 'Group'] = 'Other'
    Copier après la connexion

La trame de données résultante contiendra la structure aplatie souhaitée :

print(m)

    Year   Name  value Group
0   2013    Amy      2      A
1   2014    Amy      9      A
2   2013    Bob      4      B
3   2014    Bob      2      B
4   2013   Carl      7      C
...    ...    ...    ...    ...
7   2014  Chris      5      C
8   2013    Ben      1      B
9   2014    Ben      5      B
10  2013             3  Other
11  2014             6  Other
Copier après la connexion

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1671
14
Tutoriel PHP
1276
29
Tutoriel C#
1256
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et temps: tirer le meilleur parti de votre temps d'étude Python et temps: tirer le meilleur parti de votre temps d'étude Apr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

See all articles