


Quelles sont les principales différences entre « python -m » et « python » pour l'exécution de modules Python ?
Le rôle multiforme de "-m" dans l'exécution de Python en ligne de commande
Il est communément observé que les arguments python -m mymod1 mymod2.py et python mymod1. Les commandes py mymod2.py args entraînent toutes deux l'exécution de mymod1.py avec un sys.argv correspondant. Cependant, le commutateur -m offre une gamme de fonctionnalités supplémentaires, allant au-delà de la conversion du nom de fichier en nom de module.
1. Exécution de modules via les noms de modules
L'indicateur -m sert de moyen alternatif d'invoquer des modules Python directement à partir de la ligne de commande en utilisant leur nom de module, plutôt que le nom de fichier. Ceci est particulièrement utile pour exécuter des modules de bibliothèque standard ou des packages tiers dont les noms de fichiers peuvent être inconnus. Par exemple, pour exécuter le module http.server, on peut simplement taper python -m http.server.
2. Intégration dans sys.path
L'utilisation du commutateur -m appelle non seulement le module mais modifie également sys.path pour inclure le répertoire actuel, une fonctionnalité absente lors de l'utilisation de python mymod1.py. Cela permet l'exécution de packages locaux contenant des importations relatives sans avoir besoin d'installation.
3. Prise en charge des importations relatives
En plus d'ajouter le répertoire actuel à sys.path, -m permet l'exécution de modules avec des importations relatives. Ceci est réalisé en définissant la variable __package__ sur le module parent du nom de module spécifié, permettant aux importations relatives de fonctionner comme prévu.
Comparaison des méthodes d'appel
Pour illustrer les différences entre les 三种n façons d'invoquer des modules Python, le tableau suivant présente les attributs clés :
Invocation Method | sys.path Modification | name | package |
---|---|---|---|
import |
None | Absolute form of |
Immediate parent package |
python |
Includes final directory in |
'__main__' | None |
python -m |
Includes current directory | '__main__' | Immediate parent package |
Conclusion
Le -m switch en python est un outil polyvalent offrant un large éventail de fonctionnalités qui vont au-delà de la simple conversion de noms de fichiers en noms de modules. Il fournit un moyen transparent d'exécuter des modules à partir de la ligne de commande, de gérer les importations relatives et d'intégrer les packages locaux dans sys.path. Cela en fait un outil précieux pour les développeurs travaillant avec des modules Python à la fois localement et en externe.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones
