


Comment puis-je identifier et supprimer les valeurs aberrantes d'un DataFrame Pandas à l'aide des scores Z ?
Identifier et exclure les valeurs aberrantes dans un DataFrame pandas
Dans un DataFrame pandas avec plusieurs colonnes, l'identification et l'exclusion des valeurs aberrantes en fonction de valeurs de colonne spécifiques peuvent améliorer l’exactitude et la fiabilité des données. Les valeurs aberrantes, ou valeurs extrêmes qui s'écartent considérablement de la majorité des données, peuvent fausser les résultats de l'analyse et conduire à des conclusions incorrectes.
Pour filtrer efficacement les valeurs aberrantes, une approche robuste consiste à s'appuyer sur des techniques statistiques. Une méthode consiste à utiliser le score Z, une mesure du nombre d’écarts types d’une valeur par rapport à la moyenne. Les lignes dont les scores Z dépassent un seuil prédéfini peuvent être considérées comme des valeurs aberrantes.
Utilisation de sciPy.stats.zscore
La bibliothèque sciPy fournit la fonction zscore() pour calculer Z -scores pour chaque colonne d'un DataFrame. Voici une solution élégante pour détecter et exclure les valeurs aberrantes :
import pandas as pd import numpy as np from scipy import stats df = pd.DataFrame({'Vol': [1200, 1220, 1215, 4000, 1210]}) outlier_threshold = 3 # Compute Z-scores for the 'Vol' column zscores = np.abs(stats.zscore(df['Vol'])) # Create a mask to identify rows with outliers outlier_mask = zscores > outlier_threshold # Exclude rows with outliers df_without_outliers = df[~outlier_mask]
Cette approche identifie efficacement les lignes aberrantes et les supprime du DataFrame.
Gestion de plusieurs colonnes
En cas de plusieurs colonnes, la détection des valeurs aberrantes peut être appliquée à une colonne spécifique ou à toutes les colonnes simultanément :
# Outliers in at least one column outlier_mask = (np.abs(stats.zscore(df)) < outlier_threshold).all(axis=1) # Remove rows with outliers in any column df_without_outliers = df[~outlier_mask]
# Outliers in a specific column ('Vol') zscores = np.abs(stats.zscore(df['Vol'])) outlier_mask = zscores > outlier_threshold # Remove rows with outliers in the 'Vol' column df_without_outliers = df[~outlier_mask]
En employant des méthodes statistiques telles que les calculs du score Z, il est possible de détecter et d'exclure efficacement les valeurs aberrantes dans un DataFrame pandas, garantissant ainsi des données d'analyse plus propres et plus fiables.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.
