Maison développement back-end Tutoriel Python Comment mettre à jour en toute sécurité les éléments de l'interface graphique PyQt à partir de plusieurs threads ?

Comment mettre à jour en toute sécurité les éléments de l'interface graphique PyQt à partir de plusieurs threads ?

Dec 02, 2024 am 01:20 AM

How to Safely Update PyQt GUI Elements from Multiple Threads?

Mise à jour des éléments de l'interface graphique dans les applications PyQt multithread

Le multithreading dans PyQT permet une réactivité accrue des applications en exécutant des tâches simultanément. Cependant, un défi inhérent consiste à mettre à jour l’interface utilisateur graphique (GUI) à partir de différents threads. Cet article fournit une explication détaillée et des exemples sur la façon de modifier en toute sécurité des éléments GUI à partir de threads non principaux dans PyQt.

Le problème :

Modifier des éléments GUI à partir de threads non principaux. les threads principaux peuvent entraîner un comportement inattendu et des plantages. Les widgets PyQt ne sont pas thread-safe, ce qui signifie qu'ils ne doivent être consultés et manipulés qu'à partir du thread principal.

Approche Thread-Safe utilisant des signaux et des emplacements :

L'approche recommandée L'approche pour gérer les mises à jour de l'interface graphique à partir des threads non principaux consiste à utiliser le mécanisme de signaux et d'emplacements de PyQt. Les signaux émettent des notifications d'un objet à d'autres, tandis que les slots sont des méthodes qui répondent à ces signaux. En utilisant des signaux et des emplacements, vous pouvez envoyer des demandes de mise à jour au thread principal, garantissant ainsi une modification sûre et contrôlée de l'interface graphique.

Exemple :

import sys
import urllib2

from PyQt4 import QtCore, QtGui

class DownloadThread(QtCore.QThread):

    data_downloaded = QtCore.pyqtSignal(object)

    def __init__(self, url):
        QtCore.QThread.__init__(self)
        self.url = url

    def run(self):
        info = urllib2.urlopen(self.url).info()
        self.data_downloaded.emit('%s\n%s' % (self.url, info))


class MainWindow(QtGui.QWidget):
    def __init__(self):
        super(MainWindow, self).__init__()
        self.list_widget = QtGui.QListWidget()
        self.button = QtGui.QPushButton("Start")
        self.button.clicked.connect(self.start_download)
        layout = QtGui.QVBoxLayout()
        layout.addWidget(self.button)
        layout.addWidget(self.list_widget)
        self.setLayout(layout)

    def start_download(self):
        urls = ['http://google.com', 'http://twitter.com', 'http://yandex.ru',
                'http://stackoverflow.com/', 'http://www.youtube.com/']
        self.threads = []
        for url in urls:
            downloader = DownloadThread(url)
            downloader.data_downloaded.connect(self.on_data_ready)
            self.threads.append(downloader)
            downloader.start()

    def on_data_ready(self, data):
        print data
        self.list_widget.addItem(unicode(data))


if __name__ == "__main__":
    app = QtGui.QApplication(sys.argv)
    window = MainWindow()
    window.resize(640, 480)
    window.show()
    sys.exit(app.exec_())
Copier après la connexion

Cet exemple montre comment pour lancer un processus de téléchargement multithread et mettre à jour l'interface graphique (widget de liste) à l'aide de signaux et d'emplacements. Chaque fil de téléchargement émet un signal lorsque les données sont prêtes, et le fil principal gère les mises à jour via l'emplacement "on_data_ready".

Approche alternative (non recommandée) :

Bien que cela ne soit pas recommandé pour des raisons de sécurité des threads, vous pouvez également transmettre directement les références de l'interface graphique aux threads et les mettre à jour dans le thread. Cependant, cette approche nécessite une manipulation prudente et doit être évitée pour les applications critiques.

import sys
import urllib2

from PyQt4 import QtCore, QtGui

class DownloadThread(QtCore.QThread):
    def __init__(self, url, list_widget):
        QtCore.QThread.__init__(self)
        self.url = url
        self.list_widget = list_widget

    def run(self):
        info = urllib2.urlopen(self.url).info()
        self.list_widget.addItem('%s\n%s' % (self.url, info))
Copier après la connexion

Conclusion :

Le multithreading dans PyQT avec les mises à jour de l'interface graphique nécessite un examen attentif. L'approche préférée consiste à utiliser des signaux et des emplacements pour distribuer en toute sécurité les mises à jour de l'interface graphique au thread principal. Cela garantit la sécurité des threads et maintient l'intégrité de l'interface graphique de votre application.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1672
14
Tutoriel PHP
1277
29
Tutoriel C#
1257
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Python pour le développement Web: applications clés Python pour le développement Web: applications clés Apr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

See all articles