Maison développement back-end Tutoriel Python Quelle est la différence entre les formes (R, 1) et (R,) de NumPy et comment les problèmes de multiplication matricielle peuvent-ils être résolus ?

Quelle est la différence entre les formes (R, 1) et (R,) de NumPy et comment les problèmes de multiplication matricielle peuvent-ils être résolus ?

Dec 04, 2024 pm 02:13 PM

What's the Difference Between NumPy's (R, 1) and (R,) Shapes, and How Can Matrix Multiplication Issues Be Resolved?

Quelle est la différence entre les formes (R, 1) et (R,) dans NumPy ?

Dans NumPy, un Un tableau à une dimension peut être représenté de deux manières : sous forme d'une forme (R, 1) (une liste de nombres) ou sous forme d'une forme (R,) (un liste des listes). Ces deux formes représentent les mêmes données sous-jacentes, mais elles ont des implications différentes pour la multiplication matricielle.

Lorsque vous multipliez deux matrices, leurs formes doivent être compatibles. Si une matrice a une forme (R, 1) et l'autre matrice a une forme (R,), NumPy générera une erreur car les formes ne sont pas alignées. En effet, (R, 1) est une forme bidimensionnelle, tandis que (R,) est une forme unidimensionnelle.

Pour corriger cette erreur, vous pouvez remodeler explicitement l'une des matrices. Par exemple :

import numpy as np

M = np.array([[1, 2, 3], [4, 5, 6]])
ones = np.ones((M.shape[0], 1))

result = np.dot(M[:,0].reshape((M.shape[0], 1)), ones)
Copier après la connexion

Dans cet exemple, nous remodelons la première colonne de M (une forme (R,)) en une forme (R, 1) en utilisant la méthode reshape(). Cela rend les formes des deux matrices compatibles et la multiplication peut être effectuée avec succès.

Existe-t-il de meilleures façons de réaliser l'exemple ci-dessus sans remodeler explicitement ?

Oui, il existe de meilleures façons de réaliser l'exemple ci-dessus sans le remodeler explicitement. Une solution consiste à utiliser la méthode sum() avec l’argument axis. Par exemple :

import numpy as np

M = np.array([[1, 2, 3], [4, 5, 6]])
ones = np.ones((M.shape[0], 1))

result = np.dot(M[:,0], ones) + M[:,1:]
Copier après la connexion

Dans cet exemple, nous utilisons la méthode sum() pour additionner la première colonne de M avec les colonnes restantes. Cela nous donne une matrice avec la même forme que M. Nous pouvons alors effectuer la multiplication sans aucune erreur.

Une autre façon de réaliser l'exemple ci-dessus sans remodeler explicitement est d'utiliser la fonction Broadcast(). Par exemple :

import numpy as np

M = np.array([[1, 2, 3], [4, 5, 6]])
ones = np.ones((M.shape[0], 1))

result = np.dot( np.broadcast_to(M[:,0], M.shape), ones)
Copier après la connexion

Dans cet exemple, nous utilisons la fonction Broadcast() pour diffuser la première colonne de M à la forme de M. Cela rend les formes des deux matrices compatibles, et la multiplication peut être exécuté avec succès.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1666
14
Tutoriel PHP
1273
29
Tutoriel C#
1252
24
Python vs C: applications et cas d'utilisation comparés Python vs C: applications et cas d'utilisation comparés Apr 12, 2025 am 12:01 AM

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Python: jeux, GUIS, et plus Python: jeux, GUIS, et plus Apr 13, 2025 am 12:14 AM

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et temps: tirer le meilleur parti de votre temps d'étude Python et temps: tirer le meilleur parti de votre temps d'étude Apr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

See all articles