


Comment transformer une table de données dans Pandas avec les valeurs de la colonne « Indicateur » devenant de nouvelles colonnes ?
Faire pivoter une trame de données dans Pandas
La tâche consiste à transposer une table de données au format CSV, où les valeurs de la colonne "Indicateur" deviennent les nouvelles colonnes. Le résultat souhaité est un format aplati dans lequel les lignes sont définies par « Pays » et « Année », et les colonnes sont des valeurs « Indicateur ».
Utilisation de .pivot
Pour réaliser l'opération pivot, on peut utiliser la méthode .pivot comme suit :
out = df.pivot(index=['Country', 'Year'], columns='Indicator', values='Value')
Cette méthode réorganise les données de telle sorte que le « Pays » et l'« Année » deviennent les indices de ligne et les valeurs de « l'Indicateur » deviennent les colonnes. La variable « out » résultante contient les données pivotées.
Pour renvoyer les données dans un format de tableau plat, vous pouvez utiliser .rename_axis pour éliminer l'étiquette « Indicateur » des colonnes et utiliser .reset_index pour restaurer « Pays ». et 'Année' sous forme de colonnes.
print(out.rename_axis(columns=None).reset_index())
Cela produit un tableau aplati avec 'Pays', 'Année', et les valeurs « Indicateur » sous forme de colonnes.
Utilisation de .pivot_table
En cas de combinaisons « Pays », « Année » et « Indicateur » en double dans le l'ensemble de données original, .pivot_table peut être utilisé. Il effectue une agrégation (moyenne par défaut) sur les valeurs en double.
out = df.pivot_table( index=['Country', 'Year'], columns='Indicator', values='Value') print(out.rename_axis(columns=None).reset_index())
Cette approche aboutit à un tableau aplati dans lequel les valeurs en double sont moyennées et l'étiquette « Indicateur » est omise dans les colonnes.
Documentation pertinente
Pour plus de détails sur la refonte et les tableaux croisés dynamiques dans Pandas, reportez-vous aux ressources suivantes :
- Guide d'utilisation du remodelage et des tableaux croisés dynamiques
- Documentation Pandas : Remodelage et pivotement
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Solution aux problèmes d'autorisation Lors de la visualisation de la version Python dans Linux Terminal Lorsque vous essayez d'afficher la version Python dans Linux Terminal, entrez Python ...

Lorsque vous utilisez la bibliothèque Pandas de Python, comment copier des colonnes entières entre deux frames de données avec différentes structures est un problème courant. Supposons que nous ayons deux dats ...

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Les expressions régulières sont des outils puissants pour la correspondance des motifs et la manipulation du texte dans la programmation, améliorant l'efficacité du traitement de texte sur diverses applications.

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Comment Uvicorn écoute-t-il en permanence les demandes HTTP? Uvicorn est un serveur Web léger basé sur ASGI. L'une de ses fonctions principales est d'écouter les demandes HTTP et de procéder ...

Dans Python, comment créer dynamiquement un objet via une chaîne et appeler ses méthodes? Il s'agit d'une exigence de programmation courante, surtout si elle doit être configurée ou exécutée ...
