Lorsque vous travaillez avec de grands modèles de langage (LLM), repérer les hallucinations peut être délicat. Au lieu de nous fier uniquement à un LLM comme juge (qui peut encore commettre des erreurs, et de nombreux cadres d'évaluation n'utilisent que cela pour la détection des hallucinations), nous pouvons utiliser la perplexité, l'implication et l'entropie sémantique discrète pour mieux identifier les hallucinations potentielles. Bien que j'utilise ici un LLM pour détecter l'implication, ce n'est pas nécessaire. Cela dit, cette méthode fonctionne mieux pour les questions avec des réponses simples et factuelles, celles qui ne sont ni trop vagues ni subjectives. Que pensez-vous de l’utilisation de ces mesures combinées pour une meilleure détection des hallucinations ? Je comprends que le code peut être amélioré/optimisé, mais l'objectif était de tester rapidement son fonctionnement.
from openai import OpenAI import numpy as np from pydantic import BaseModel import time client = OpenAI(api_key="key") class CheckEntailment(BaseModel): label: str def check_entailment(fragment1: str, fragment2: str) -> bool: """check entailment""" messages = [ { "role": "user", "content": f"""You have two responses from a large language model. Check if the meaning of one repsonse is entailed by the other, or if there is a contradiction. Return '0' if entailment. Return '1' if contradiction. Return only the label, without any explanation. \n Response1: \n {fragment1}\n\n Response2: \n {fragment2}""", } ] completion = client.beta.chat.completions.parse( model="gpt-4o-mini", messages=messages, temperature=0.1, logprobs=True, top_logprobs=2, response_format=CheckEntailment, ) entailment = False # print(completion.choices[0].logprobs.content[3].top_logprobs) for top_logprob in completion.choices[0].logprobs.content[3].top_logprobs: print(top_logprob.token, np.round(np.exp(top_logprob.logprob), 2)) if "0" in top_logprob.token and np.exp(top_logprob.logprob) > 0.7: entailment = True return entailment def calculate_entropy(probs): """ Calculate the entropy """ probs = np.array(probs) probs = probs / probs.sum() probs = probs[probs > 0] entropy = -np.sum(probs * np.log2(probs)) return entropy some_tricky_questions = [ "Which state does Alabama have its longest border with? Is it Florida or Tennessee?", "Who hosted the British Gameshow Countdown in 2007: a) Nick Hewer b) Richard Whiteley c) Jeff Stelling?", "Trivia question: Which Black Eyed Peas band member was the only one to host Saturday Night Live?", "What year in the 1980s were the FIS Alpine World Ski Championships hosted in Argentina?", "How many Brazilian numbers are there between 1-6?", "Which Israeli mathematician founded an online sequences repository in the 1970s?", "Write the 7 english words that have three consecutive double letters. No need to provide explanations, just say the words.", # adding two questions where it should not hallucinate "What is the capital of India?", "what is the full form of CPU?", ] for question in some_tricky_questions: print("question", question) messages = [{"role": "user", "content": f"{question}"}] gpt_response = client.chat.completions.create( model="gpt-4o-mini", messages=messages, temperature=0.1, logprobs=True, max_completion_tokens=60, ) time.sleep(2) # get perplexity score using a low temperature response logprobs = [token.logprob for token in gpt_response.choices[0].logprobs.content] perplexity_score = np.round(np.exp(-np.mean(logprobs)), 2) # initialize clusters with the first response clusters = [[gpt_response.choices[0].message.content]] # generate some more responses using higher temperature and check entailment gpt_response = client.chat.completions.create( model="gpt-4o-mini", messages=messages, n=7, temperature=0.9, logprobs=True, max_completion_tokens=60, ) time.sleep(2) # check entailment and form clusters responses = [choice.message.content for choice in gpt_response.choices] for response in responses[1:]: found_cluster = False for cluster in clusters: if check_entailment(cluster[0], response): cluster.append(response) found_cluster = True break if not found_cluster: clusters.append([response]) cluster_probs = [len(cluster) / (len(responses) + 1) for cluster in clusters] discrete_entropy = calculate_entropy(cluster_probs) print("clusters", clusters) print("no of clusters", len(clusters)) print("perplexity", perplexity_score) print("entropy", discrete_entropy)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!