Maison développement back-end Tutoriel Python Backtestez comme un pro avec une API Forex

Backtestez comme un pro avec une API Forex

Dec 13, 2024 am 03:18 AM

La nature dynamique des marchés financiers nécessite l'utilisation de données fiables pour développer et valider des stratégies de trading. L'intégration efficace de données de haute qualité dans des environnements de backtesting est cruciale pour les traders et les analystes. Les API TraderMade responsabilisent ces professionnels en fournissant des données de marché précises, détaillées et complètes.
Cette analyse exploite l'API Time Series de TraderMade pour obtenir des données historiques, exécuter une stratégie croisée simple de moyenne mobile (SMA) et évaluer ses performances historiques.

À propos de la stratégie croisée SMA

La stratégie croisée de moyenne mobile simple (SMA) est une technique d'analyse technique fondamentale. Cela implique l'observation de deux SMA : un SMA à court terme, qui présente une plus grande sensibilité aux variations de prix, et un SMA à long terme, qui atténue l'impact de la volatilité des prix à court terme.

Un signal d'achat est généré lorsque le SMA à court terme dépasse le SMA à long terme, ce qui signifie une tendance potentielle à la hausse. À l’inverse, un signal de vente est déclenché lorsque le SMA à court terme tombe en dessous du SMA à long terme, indiquant une tendance potentielle à la baisse.

Collecte de données

Commencez par installer le SDK de TraderMade comme suit :

!pip install tradermade

Copier après la connexion
Copier après la connexion

Nous utilisons le kit de développement logiciel (SDK) installé pour récupérer des données de séries chronologiques horaires pour les paires de devises (forex). Le code Python suivant illustre l'obtention de données pour la paire de devises EUR/USD.

import tradermade as tm
import pandas as pd
def fetch_forex_data(api_key, currency, start_date, end_date,    interval="hourly", fields=["open", "high", "low", "close"]):

   # Set API key
   tm.set_rest_api_key(api_key)
   # Fetch the data
   data = tm.timeseries(currency=currency, start=start_date, end=end_date, interval=interval, fields=fields)

   # Convert data directly to DataFrame
   df = pd.DataFrame(data)

   # Convert 'date' column to datetime
   df["date"] = pd.to_datetime(df["date"])

   # Set 'date' as the index
   df.set_index("date", inplace=True)

   return df

# Adjust as needed
api_key = "YOUR TRADERMADE API KEY"
currency = "EURUSD"
start_date = "2024-11-01-00:00"
end_date = "2024-11-27-05:12"

# Fetch the data and display the first few rows
forex_data = fetch_forex_data(api_key, currency, start_date, end_date)
forex_data = forex_data.rename(columns={"open": "Open", "high": "High", "low": "Low", "close": "Close"})
forex_data.head()
Copier après la connexion

Backtest Like a Pro with a Forex API

L'acquisition des données et le prétraitement pour le backtesting ont été terminés avec succès.

Mise en œuvre et backtesting d’une stratégie simple de crossover SMA

Cette section utilise la bibliothèque Python de backtesting pour définir et évaluer notre stratégie de crossover SMA. Pour ceux qui ne connaissent pas la bibliothèque de backtesting, elle est considérée comme un framework Python important et robuste pour le backtesting des stratégies de trading techniques. Ces stratégies englobent une gamme diversifiée, notamment le croisement SMA, le croisement RSI, les stratégies d'inversion de moyenne, les stratégies de dynamique et autres.

import numpy as np
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA

# Define the SMA crossover trading strategy
class SMACrossoverStrategy(Strategy):
       def init(self):
           # Calculate shorter-period SMAs for limited data
           price = self.data.Close
           self.short_sma = self.I(SMA, price, 20)  # Short window
           self.long_sma = self.I(SMA, price, 60)  # Long window

       def next(self):
           # Check for crossover signals
           if crossover(self.short_sma, self.long_sma):
               self.buy()
           elif crossover(self.long_sma, self.short_sma):
               self.sell()

   # Initialize and run the backtest
bt = Backtest(forex_data, SMACrossoverStrategy, cash=10000, commission=.002)
result = bt.run()

   # Display the backtest results
print("Backtest Results:")
print(result)
Copier après la connexion

Backtest Like a Pro with a Forex API

La stratégie utilise deux moyennes mobiles : une SMA sur 20 périodes et une SMA sur 60 périodes. Un ordre d'achat est exécuté lorsque le SMA à court terme dépasse le SMA à long terme. À l’inverse, un ordre de vente est déclenché lorsque le SMA à court terme tombe en dessous du SMA à long terme. Au cours d'une période de négociation de 25 jours, cette stratégie simple a généré un bénéfice de 243 $ sur six transactions.

Analyse de la courbe des actions et des SMA

Le code Python suivant évalue les performances de la stratégie de croisement SMA. Les SMA facilitent la visualisation des tendances des prix et identifient les points de croisement qui génèrent des signaux d'achat/vente. La courbe des actions sert de mesure de performance, illustrant l'impact de ces signaux sur la croissance du portefeuille.

En intégrant les deux courbes, les traders peuvent facilement observer la corrélation entre les événements de croisement et les changements dans la valeur du portefeuille, fournissant ainsi des informations cruciales sur l'efficacité de la stratégie de croisement SMA.

Plotly est utilisé pour visualiser les courbes d'actions et de SMA, permettant aux traders d'évaluer efficacement la rentabilité de leur stratégie.

!pip install tradermade

Copier après la connexion
Copier après la connexion

Backtest Like a Pro with a Forex API

Remarques finales

Un backtesting réussi nécessite des données précises et à haute fréquence, et les API de TraderMade facilitent une intégration transparente. Quel que soit votre niveau d'expérience – que vous soyez un novice explorant diverses stratégies ou un analyste expérimenté développant des modèles sophistiqués – les offres de l'entreprise fournissent les outils nécessaires.
Êtes-vous prêt à intégrer les API de TraderMade dans votre flux de travail ? Commencez votre voyage aujourd'hui et transformez vos concepts en réalité.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Dead Rails - Comment apprivoiser les loups
3 Il y a quelques semaines By DDD
Niveaux de force pour chaque ennemi et monstre de R.E.P.O.
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
2 Il y a quelques semaines By DDD

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1655
14
Tutoriel PHP
1253
29
Tutoriel C#
1227
24
Python vs C: applications et cas d'utilisation comparés Python vs C: applications et cas d'utilisation comparés Apr 12, 2025 am 12:01 AM

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Combien de python pouvez-vous apprendre en 2 heures? Combien de python pouvez-vous apprendre en 2 heures? Apr 09, 2025 pm 04:33 PM

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Python: jeux, GUIS, et plus Python: jeux, GUIS, et plus Apr 13, 2025 am 12:14 AM

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Le plan Python de 2 heures: une approche réaliste Le plan Python de 2 heures: une approche réaliste Apr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python: Explorer ses applications principales Python: Explorer ses applications principales Apr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Python et temps: tirer le meilleur parti de votre temps d'étude Python et temps: tirer le meilleur parti de votre temps d'étude Apr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

See all articles