


Comment puis-je appliquer efficacement plusieurs fonctions à plusieurs colonnes GroupBy dans Pandas ?
Appliquer plusieurs fonctions à plusieurs colonnes GroupBy
Introduction
Lorsque vous travaillez avec des données groupées, il est souvent nécessaire d'appliquer plusieurs fonctions à plusieurs colonnes. La bibliothèque Pandas propose plusieurs méthodes pour y parvenir, notamment les méthodes agg et apply. Cependant, ces méthodes présentent certaines limites et ne répondent pas toujours à des cas d'utilisation spécifiques.
Utiliser agg avec un Dict
Comme mentionné dans la question, il est possible d'appliquer plusieurs fonctions à une série groupby objet à l'aide d'un dictionnaire :
grouped['D'].agg({'result1' : np.sum, 'result2' : np.mean})
Cette approche permet de spécifier les noms de colonnes comme clés et les fonctions correspondantes comme valeurs. Cependant, cela ne fonctionne que pour les objets groupby Series. Lorsqu'elles sont appliquées à un DataFrame groupby, les clés du dictionnaire sont censées être des noms de colonnes, et non des noms de colonnes de sortie.
Utilisation d'agg avec les fonctions Lambda
La question explore également l'utilisation des fonctions lambda dans agg pour effectuer opérations basées sur d’autres colonnes au sein de l’objet groupby. Cette approche convient lorsque vos fonctions impliquent des dépendances sur d'autres colonnes. Bien que cela ne soit pas explicitement pris en charge par la méthode agg, il est possible de contourner cette limitation en spécifiant manuellement les noms de colonnes sous forme de chaînes :
grouped.agg({'C_sum' : lambda x: x['C'].sum(), 'C_std': lambda x: x['C'].std(), 'D_sum' : lambda x: x['D'].sum()}, 'D_sumifC3': lambda x: x['D'][x['C'] == 3].sum(), ...)
Cette approche permet d'appliquer plusieurs fonctions à différentes colonnes, y compris celles qui dépendent des autres. . Cependant, il peut être verbeux et nécessite une gestion minutieuse des noms de colonnes.
Utiliser apply avec une fonction personnalisée
Une approche plus flexible consiste à utiliser la méthode apply, qui transmet l'ensemble du DataFrame du groupe à la fonction fournie. Cela permet d'effectuer des opérations et des interactions plus complexes entre les colonnes du groupe :
def f(x): d = {} d['a_sum'] = x['a'].sum() d['a_max'] = x['a'].max() d['b_mean'] = x['b'].mean() d['c_d_prodsum'] = (x['c'] * x['d']).sum() return pd.Series(d, index=['a_sum', 'a_max', 'b_mean', 'c_d_prodsum']) df.groupby('group').apply(f)
En renvoyant une série avec des colonnes correctement étiquetées, vous pouvez facilement effectuer plusieurs calculs sur le groupby DataFrame. Cette approche est plus polyvalente et permet des opérations complexes basées sur plusieurs colonnes.
Conclusion
L'application de plusieurs fonctions à plusieurs colonnes regroupées nécessite un examen attentif de la structure des données et des opérations souhaitées. La méthode agg convient aux opérations simples sur des objets Series, tandis que la méthode apply offre une plus grande flexibilité lorsque vous travaillez avec des DataFrames groupby ou effectuez des calculs complexes.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.
