Maison développement back-end Tutoriel Python Tutoriel détaillé : Exploration des dossiers du référentiel GitHub sans API

Tutoriel détaillé : Exploration des dossiers du référentiel GitHub sans API

Dec 16, 2024 am 06:28 AM

Detailed Tutorial: Crawling GitHub Repository Folders Without API

Tutoriel ultra-détaillé : Exploration des dossiers du référentiel GitHub sans API

Ce tutoriel ultra-détaillé, rédigé par Shpetim Haxhiu, vous guide tout au long de l'exploration des dossiers du référentiel GitHub par programmation sans recourir à l'API GitHub. Il comprend tout, de la compréhension de la structure à la fourniture d'une implémentation robuste et récursive avec des améliorations.


1. Configuration et installation

Avant de commencer, assurez-vous d'avoir :

  1. Python : Version 3.7 ou supérieure installée.
  2. Bibliothèques : Demandes d'installation et BeautifulSoup.
   pip install requests beautifulsoup4
Copier après la connexion
Copier après la connexion
  1. Éditeur : tout IDE pris en charge par Python, tel que VS Code ou PyCharm.

2. Analyse de la structure HTML de GitHub

Pour récupérer les dossiers GitHub, vous devez comprendre la structure HTML d'une page de référentiel. Sur une page du référentiel GitHub :

  • Les Les dossiers sont liés à des chemins tels que /tree//.
  • Les Fichiers sont liés avec des chemins tels que /blob//.

Chaque élément (dossier ou fichier) se trouve dans un

avec l'attribut role="rowheader" et contient un étiqueter. Par exemple :

<div role="rowheader">
  <a href="/owner/repo/tree/main/folder-name">folder-name</a>
</div>
Copier après la connexion
Copier après la connexion

3. Implémentation du Scraper

3.1. Fonction d'exploration récursive

Le script grattera récursivement les dossiers et imprimera leur structure. Pour limiter la profondeur de récursion et éviter une charge inutile, nous utiliserons un paramètre de profondeur.

import requests
from bs4 import BeautifulSoup
import time

def crawl_github_folder(url, depth=0, max_depth=3):
    """
    Recursively crawls a GitHub repository folder structure.

    Parameters:
    - url (str): URL of the GitHub folder to scrape.
    - depth (int): Current recursion depth.
    - max_depth (int): Maximum depth to recurse.
    """
    if depth > max_depth:
        return

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url} (Status code: {response.status_code})")
        return

    soup = BeautifulSoup(response.text, 'html.parser')

    # Extract folder and file links
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            print(f"{'  ' * depth}Folder: {item_name}")
            crawl_github_folder(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            print(f"{'  ' * depth}File: {item_name}")

# Example usage
if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    crawl_github_folder(repo_url)
Copier après la connexion
Copier après la connexion

4. Fonctionnalités expliquées

  1. En-têtes de requête : Utilisation d'une chaîne User-Agent pour imiter un navigateur et éviter le blocage.
  2. Exploration récursive :
    • Détecte les dossiers (/tree/) et les saisit de manière récursive.
    • Liste les fichiers (/blob/) sans entrer davantage.
  3. Indentation : reflète la hiérarchie des dossiers dans la sortie.
  4. Limitation de profondeur : empêche une récursion excessive en définissant une profondeur maximale (max_degree).

5. Améliorations

Ces améliorations sont conçues pour améliorer la fonctionnalité et la fiabilité du robot d'exploration. Ils répondent à des défis courants tels que l'exportation des résultats, la gestion des erreurs et le contournement des limites de débit, garantissant ainsi l'efficacité et la convivialité de l'outil.

5.1. Exportation des résultats

Enregistrez la sortie dans un fichier JSON structuré pour une utilisation plus facile.

   pip install requests beautifulsoup4
Copier après la connexion
Copier après la connexion

5.2. Gestion des erreurs

Ajoutez une gestion robuste des erreurs pour les erreurs réseau et les modifications HTML inattendues :

<div role="rowheader">
  <a href="/owner/repo/tree/main/folder-name">folder-name</a>
</div>
Copier après la connexion
Copier après la connexion

5.3. Limitation du débit

Pour éviter d'être limité par GitHub, introduisez des délais :

import requests
from bs4 import BeautifulSoup
import time

def crawl_github_folder(url, depth=0, max_depth=3):
    """
    Recursively crawls a GitHub repository folder structure.

    Parameters:
    - url (str): URL of the GitHub folder to scrape.
    - depth (int): Current recursion depth.
    - max_depth (int): Maximum depth to recurse.
    """
    if depth > max_depth:
        return

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url} (Status code: {response.status_code})")
        return

    soup = BeautifulSoup(response.text, 'html.parser')

    # Extract folder and file links
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            print(f"{'  ' * depth}Folder: {item_name}")
            crawl_github_folder(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            print(f"{'  ' * depth}File: {item_name}")

# Example usage
if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    crawl_github_folder(repo_url)
Copier après la connexion
Copier après la connexion

6. Considérations éthiques

Rédigée par Shpetim Haxhiu, expert en automatisation logicielle et programmation éthique, cette section garantit le respect des meilleures pratiques lors de l'utilisation du robot GitHub.

  • Conformité : adhérez aux conditions d'utilisation de GitHub.
  • Minimiser la charge : respectez les serveurs de GitHub en limitant les requêtes et en ajoutant des délais.
  • Autorisation : obtenez l'autorisation pour une exploration approfondie des référentiels privés.

7. Code complet

Voici le script consolidé avec toutes les fonctionnalités incluses :

import json

def crawl_to_json(url, depth=0, max_depth=3):
    """Crawls and saves results as JSON."""
    result = {}

    if depth > max_depth:
        return result

    headers = {"User-Agent": "Mozilla/5.0"}
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        print(f"Failed to access {url}")
        return result

    soup = BeautifulSoup(response.text, 'html.parser')
    items = soup.select('div[role="rowheader"] a')

    for item in items:
        item_name = item.text.strip()
        item_url = f"https://github.com{item['href']}"

        if '/tree/' in item_url:
            result[item_name] = crawl_to_json(item_url, depth + 1, max_depth)
        elif '/blob/' in item_url:
            result[item_name] = "file"

    return result

if __name__ == "__main__":
    repo_url = "https://github.com/<owner>/<repo>/tree/<branch>/<folder>"
    structure = crawl_to_json(repo_url)

    with open("output.json", "w") as file:
        json.dump(structure, file, indent=2)

    print("Repository structure saved to output.json")
Copier après la connexion

En suivant ce guide détaillé, vous pouvez créer un robot d'exploration de dossiers GitHub robuste. Cet outil peut être adapté à divers besoins tout en garantissant le respect de l'éthique.


N'hésitez pas à laisser des questions dans la section commentaires ! N'oubliez pas non plus de me contacter :

  • Email : shpetim.h@gmail.com
  • LinkedIn : linkedin.com/in/shpetimhaxhiu
  • GitHub : github.com/shpetimhaxhiu

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1669
14
Tutoriel PHP
1273
29
Tutoriel C#
1256
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et temps: tirer le meilleur parti de votre temps d'étude Python et temps: tirer le meilleur parti de votre temps d'étude Apr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Python pour le développement Web: applications clés Python pour le développement Web: applications clés Apr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

See all articles