CIFAR dans PyTorch
Achetez-moi un café☕
*Mon message explique CIFAR-100.
CIFAR100() peut utiliser l'ensemble de données CIFAR-100 comme indiqué ci-dessous :
*Mémos :
- Le 1er argument est root (Required-Type:str ou pathlib.Path). *Un chemin absolu ou relatif est possible.
- Le 2ème argument est train(Optional-Default:True-Type:bool). *Si c'est vrai, les données du train (50 000 images) sont utilisées tandis que si c'est faux, les données de test (10 000 images) sont utilisées.
- Le 3ème argument est transform(Optional-Default:None-Type:callable).
- Le 4ème argument est target_transform(Optional-Default:None-Type:callable).
- Le 5ème argument est download(Optional-Default:False-Type:bool) :
*Mémos :
- Si c'est vrai, l'ensemble de données est téléchargé depuis Internet et extrait (décompressé) à la racine.
- Si c'est Vrai et que l'ensemble de données est déjà téléchargé, il est extrait.
- Si c'est vrai et que l'ensemble de données est déjà téléchargé et extrait, rien ne se passe.
- Il devrait être faux si l'ensemble de données est déjà téléchargé et extrait car il est plus rapide.
- Vous pouvez télécharger et extraire manuellement l'ensemble de données (cifar-100-python.tar.gz) d'ici vers data/cifar-100-python/.
from torchvision.datasets import CIFAR100 train_data = CIFAR100( root="data" ) train_data = CIFAR100( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = CIFAR100( root="data", train=False ) len(train_data), len(test_data) # (50000, 10000) train_data # Dataset CIFAR100 # Number of datapoints: 50000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method CIFAR10.download of Dataset CIFAR100 # Number of datapoints: 50000 # Root location: data # Split: Train> len(train_data.classes), train_data.classes # (100, # ['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', # 'bicycle', 'bottle', 'bowl', ..., 'wolf', 'woman', 'worm'] train_data[0] # (<PIL.Image.Image image mode=RGB size=32x32>, 19) train_data[1] # (<PIL.Image.Image image mode=RGB size=32x32>, 29) train_data[2] # (<PIL.Image.Image image mode=RGB size=32x32>, 0) train_data[3] # (<PIL.Image.Image image mode=RGB size=32x32>, 11) train_data[4] # (<PIL.Image.Image image mode=RGB size=32x32>, 1) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in enumerate(data, start=1): plt.subplot(2, 5, i) plt.title(label=lab) plt.imshow(X=im) if i == 10: break plt.tight_layout() plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Fastapi ...

Utilisation de Python dans Linux Terminal ...

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

À propos de Pythonasyncio ...

Comprendre la stratégie anti-rampe d'investissement.com, Beaucoup de gens essaient souvent de ramper les données d'actualités sur Investing.com (https://cn.investing.com/news/latest-news) ...

Chargement du fichier de cornichon dans Python 3.6 Erreur d'environnement: modulenotFounonError: NomoduLenamed ...

Discussion sur les raisons pour lesquelles les fichiers de pipelines ne peuvent pas être écrits lors de l'utilisation de robots scapisnels lors de l'apprentissage et de l'utilisation de Crawlers scapides pour un stockage de données persistant, vous pouvez rencontrer des fichiers de pipeline ...
